广东省清连中学2022年高一上数学期末质量检测试题含解析.doc
《广东省清连中学2022年高一上数学期末质量检测试题含解析.doc》由会员分享,可在线阅读,更多相关《广东省清连中学2022年高一上数学期末质量检测试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.关于的不等式恰有2个整数解,则实数的取值范围是() A. B. C. D. 2.下列说法错误的是() A.球体是旋转体 B.圆柱的母线垂直于其底面 C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台 3. “”是“”成立的() A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.下列函数中,既是偶函数又在区间上单调递增的是() A. B. C. D. 5.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:) A.6天 B.7天 C.8天 D.9天 6.已知,则的最小值为() A. B.2 C. D.4 7.已知曲线的图像,,则下面结论正确的是( ) A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线 B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线 C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线 D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线 8.下列命题中正确的是( ) A.若两个向量相等,则它们的起点和终点分别重合 B.模相等的两个平行向量是相等向量 C.若和 都是单位向量,则= D.两个相等向量的模相等 9.下列函数中,以为最小正周期且在区间上单调递减的是( ) A. B. C. D. 10.已知函数,则等于 A.2 B.4 C.1 D. 11.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是 A.①② B.②③ C.③④ D.②④ 12.函数f(x)=-4x+2x+1的值域是( ) A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.已知函数的图像恒过定点,若点也在函数的图像上,则__________ 14.对数函数(且)的图象经过点,则此函数的解析式________ 15.已知集合,若集合A有且仅有2个子集,则a的取值构成的集合为________. 16.已知集合M={3,m+1},4∈M,则实数m的值为______ 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.已知函数f(x)=是奇函数. (1)求实数m的值; (2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 18.(1)计算: (2)已知,求的值 19.已知函数(为常数)是奇函数 (1)求的值; (2)判断函数在上的单调性,并予以证明 20.对于在区间上有意义的函数,若满足对任意的,,有恒成立,则称在上是“友好”的,否则就称在上是“不友好”的.现有函数. (1)当时,判断函数在上是否“友好”; (2)若关于x的方程的解集中有且只有一个元素,求实数a的取值范围 21.已知函数是上的偶函数,且当时,. (1)求的值; (2)求函数的表达式,并直接写出其单调区间(不需要证明); (3)若,求实数的取值范围. 22.已知集合,集合. (Ⅰ)求、、; (Ⅱ)若集合且,求实数的取值范围. 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、B 【解析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围, 【详解】由恰有2个整数解,即恰有2个整数解, 所以,解得或, ①当时,不等式解集为,因为,故2个整数解为1和2, 则,即,解得; ②当时,不等式解集为,因为,故2个整数解为, 则,即,解得. 综上所述,实数的取值范围为或. 故选:B. 2、C 【解析】利用空间几何体的结构特征可得. 【详解】由旋转体的概念可知,球体是旋转体,故A正确; 圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确; 斜棱柱的侧面中可能有矩形,故C错误; 用正棱锥截得的棱台叫做正棱台,故D正确. 故选:C. 3、B 【解析】解出不等式,进而根据不等式所对应集合间的关系即可得到答案. 【详解】由,而是的真子集,所以“”是“”成立的必要不充分条件. 故选:B. 4、A 【解析】根据基本初等函数的单调性与奇偶性的定义判断可得; 【详解】解:对于A:定义域为,且,即为偶函数,且在上单调递增,故A正确; 对于B:定义域为,且,即为偶函数,在上单调递减,故B错误; 对于C:定义域为,定义域不关于原点对称,故为非奇非偶函数,故C错误; 对于D:定义域为,但是,故为非奇非偶函数,故D错误; 故选:A 5、B 【解析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为,,,所以可以得到 ,由题意可知, 所以至少需要7天,累计感染病例数增加至的4倍 故选:B 6、C 【解析】根据给定条件利用均值不等式直接计算作答. 【详解】因为,则,当且仅当,即时取“=”, 所以的最小值为. 故选:C 7、D 【解析】先将转化为,再根据三角函数图像变换的知识得出正确选项. 【详解】对于曲线,,要得到,则把上各点的横坐标缩短到原来的倍,纵坐标不变,得到,再把得到的曲线向左平移个单位长度,得到,即得到曲线. 故选:D. 8、D 【解析】考查所给的四个选项: 向量是可以平移的,则若两个向量相等,则它们的起点和终点不一定分别重合,A说法错误; 向量相等向量模相等,且方向相同,B说法错误; 若和都是单位向量,但是两向量方向不一致,则不满足,C说法错误; 两个相等向量的模一定相等,D说法正确. 本题选择D选项. 9、B 【解析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案. 【详解】解:对于A,函数的最小正周期为,不符合题意; 对于B,函数的最小正周期为,且在区间上单调递减,符合题意; 对于C,函数的最小正周期为,且在区间上单调递增,不符合题意; 对于D,函数的最小正周期为,不符合题意. 故选:B. 10、A 【解析】由题设有,所以,选A 11、D 【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D 12、A 【解析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域 【详解】令t=2x(t>0), 则原函数化为g(t)=-t2+t+1(t>0), 其对称轴方程为t=, ∴当t=时,g(t)有最大值为 ∴函数f(x)=-4x+2x+1的值域是 故选A 【点睛】本题考查利用换元法及二次函数求值域,是基础题 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、1 【解析】首先确定点A的坐标,然后求解函数的解析式,最后求解的值即可. 【详解】令可得,此时, 据此可知点A的坐标为, 点在函数的图像上,故,解得:, 函数的解析式为,则. 【点睛】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力. 14、 【解析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式. 【详解】由已知条件可得,可得,因为且,所以,. 因此,所求函数解析式为. 故答案为:. 15、 【解析】由题意得出方程有唯一实数解或有两个相等的实数解,然后讨论并求解当和时满足题意的参数的值. 【详解】∵集合A有且仅有2个子集,可得A中仅有一个元素,即方程仅有一个实数解或有两个相等的实数解. 当时,方程化为,∴,此时,符合题意; 当时,则由,,令时解方程得,此时,符合题意,令时解方程得,此时符合题意; 综上可得满足题意的参数可能的取值有0,-1,1,∴a的取值构成的集合为. 故答案为:. 【点睛】本题考查了由集合子集的个数求参数的问题,考查了分类讨论思想,属于一般难度的题. 16、3 【解析】∵集合M={3,m+1},4∈M, ∴4=m+1, 解得m=3 故答案为3. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1)2;(2)(1,3]. 【解析】(1)根据函数是奇函数求得的解析式,比照系数,即可求得参数的值; (2)根据分段函数的单调性,即可列出不等式,即可求得参数的范围. 【详解】(1)设x<0,则-x>0, 所以f(-x)=-(-x)2+2(-x)=-x2-2x. 又f(x)为奇函数,所以f(-x)=-f(x). 于是当x<0时,f(x)=x2+2x=x2+mx, 所以m=2. (2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象 知所以1<a≤3, 故实数a的取值范围是(1,3]. 【点睛】本题考查利用奇偶性求参数值,以及利用函数单调性求参数范围,属综合基础题. 18、(1);(2) 【解析】(1)根据指数的运算性质及对数的运算性质计算即可得解; (2)利用诱导公式化简,再化弦为切即可得解. 【详解】解:(1)原式; (2)原式 . 19、(1)1;(2)函数在上是减函数,证明见详解. 【解析】(1)利用,化简后可求得的值. (2)利用单调性的定义,令,计算判断出在上函数为减函数.再根据复合函数同增异减,可判断得在上的单调性. 【详解】(1)∵是奇函数, ∴, 即, 即, 解得或(舍去), 故的值为1 (2)函数在上是减函数 证明:由(1)知,设, 任取,∴, ∵,,,∴, ∴在上为减函数, 又∵函数在上为增函数, ∴函数在上为减函数 【点睛】本题考查由对数型函数的奇偶性求参数值,以及利用单调性定义证明函数单调性,属综合中档题. 20、(1)当时,函数在,上是“友好”的 (2) 【解析】(1)当时,利用函数的单调性求出和,由即可求得结论; (2)化简原方程,然后讨论的范围和方程的解即可得答案 【小问1详解】 解:当时,, 因为单调递增,在单调递减, 所以在上单调递减, 所以,, 因为, 所以由题意可得,当时,函数在上是“友好”的; 【小问2详解】 解:因为,即,且,① 所以,即,② 当时,方程②的解为,代入①成立; 当时,方程②的解为,代入①不成立; 当且时,方程②的解为或 将代入①,则且,解得且, 将代入①,则,且,解得且 所以要使方程的解集中有且只有一个元素,则, 综上,的取值范围为 21、(1) (2)答案见解析(3) 【解析】(1)根据偶函数的性质直接计算; (2)当时,则,根据偶函数的性质即可求出; (3)由题可得,根据单调性可得,即可解出. 【小问1详解】 因为是上的偶函数,所以. 【小问2详解】 当时,则,则, 故当时,, 故, 故的单调递增区间为,单调递减区间为. 【小问3详解】 若,即,即 因为在单调递减,所以, 故或,解得:或, 即. 22、 (1) ,, ;(2) . 【解析】(1)通过解不等式求得,故可求得,.求得,故可得.(2)由可得,结合数轴转化为不等式组求解即可 试题解析: (1), , ∴,, ∵, ∴. (2)∵, ∴, ∴,解得. ∴实数的取值范围为[- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 中学 2022 年高 数学 期末 质量 检测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文