试题.习题—--雨量预报方法的评价模型数学建模c题论文.doc
《试题.习题—--雨量预报方法的评价模型数学建模c题论文.doc》由会员分享,可在线阅读,更多相关《试题.习题—--雨量预报方法的评价模型数学建模c题论文.doc(29页珍藏版)》请在咨信网上搜索。
1、雨量预报方法的评价模型摘 要本模型通过对大量数据的分析与模拟,对两种不同雨量预报方法的好、坏进行了评价,并且给出了数量值指标。得到评价结论是:(1)由预测方法一得到的雨量预报值的概率统计结果优于预测方法二的预报。处理分析的简要过程为:为了简化模型计算,首先假设利用经、纬度坐标代替高斯平面直角坐标进行计算,不影响所建模型对问题的分析。将数量庞大的数据资料进行分类整理,并且转化为能被计算机处理使用的数据格式。利用数学处理软件Maple9.0 ,将网格位置和观测点位置以及观测值图形化表示。通过观察这些图形的特点,对题中个观测站点的测量数据及位置分布情况进行更细的划分,并用二次曲面插值及曲面拟合,来获
2、得近似测量数据值。其中,对观察点较独立的雨量值为非零的点,采用抛物面方程为在附近取近似值的方法插值;对两个或两个以上的非零独立点时,利用二次曲面方程做类似的进行插值。利用上述的方法求出各局部雨量观测值的拟合曲面方程,求出个网格处近似观测值的矩阵,然后利用统计的办法求出各预报雨量的网格与模拟观察值之间的方差,并进行概率分析,求出天内所有观测值与预报值间的方差平均差。越小说明预报误差越小,则预报的准确性越高。(2)公众对方法一预报的感受认可程度比方法二的值高:在我们的模型中,刻画公众所感受到的无雨、小雨、中雨、大雨、暴雨、大暴雨及特大暴雨的程度,可以用模糊数学的方法与概率来描述。在对每一种降雨级别
3、进行描述时,可以认为其中部位置应当是公众的感受程度最高之处;而对于所定义的“无雨”级别内,其中感受程度应随雨量的增加而减少,“特大暴雨”级别与“无雨”级别的变动趋势正好相反。建立了每一个级别的隶属度函数模型。 用所建的隶属度函数可以求出任何一个降雨量值,将第一问题中的预报降雨量数值矩阵及观测的降雨量数值矩阵代入隶属度函数,利用各网格点在不同时间区域上的数据方差,求出总体上的均差,做类似的比较。结果为:方法一的均差为0.00016,方法二的均差为0.0011,所以方法一的预报结果公众认可度高。本文随附件带有三百个运行程序文件关键词:降雨量,预报,公众感受,模拟,拟合,模糊数学,方差。雨量预报方法
4、的评价模型一、提出问题:雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的5347的等距网格点上。同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的。气象部门希望建立一种科学评价预报方法好坏的数学模型与方法。气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据。其中,
5、雨量用毫米做单位,小于0.1毫米视为无雨。(1) 请建立数学模型来评价两种6小时雨量预报方法的准确性;(2) 气象部门将6小时降雨量分为6等:0.12.5毫米为小雨,2.66毫米为中雨,6.112毫米为大雨,12.125毫米为暴雨,25.160毫米为大暴雨,大于60.1毫米为特大暴雨。若按此分级向公众预报,如何在评价方法中考虑公众的感受?(注:本题数据位于压缩文件C2005Data.rar中, 可从lems2005c.asp下载)二:.符号说明::表示5347个网格点所对应的经度值构成的矩阵;:表示5347个网格点所对应的纬度值构成的距阵;,: 表示5347个网格点处的实测降雨量值构成的距阵;
6、:表示5347个网格点的预报降雨量值距阵;:实测值与预报值的差矩阵;: 表示月份(=6,7),表示日期,表示第日21点至此日(及+1日)20点预测量的序号;: 表示均方误差值;:方差均值。三、模型的假设1、将观察区域视为一个平面区域;2、所设的观察点位置足以反映整个预报区域的气候特征;四、模型的建立与分析 第一问:评价两种6小时雨量预报方法的准确性数学模型的建立1 模型分析气象预报是一项统计、计算工作量极大且具有非常明显随机特性的工作,相关部门为了能够较准确的预报天气的变化情况,每天需要处理大量数据,并且利用概率统计的数学方法进行处理与预测,以达到使天气预报的准确性满足人们生活工作的需要。查阅
7、有关气象处理资料,我们了解到天气的预报,是以大量的观察数据为基础进行模拟和分析得到的。这也是本模型的建模思路与方法。首先利用计算机将题中所给的全部数据(共831971条)按时段与数据处理方法的不同进行分类整理。因为观测数据点与预报网格点的个数与位置都不一一对应,所以我们首先要得到网格点上的近似观测值。我们的方法是利用91个观测点的实测值进行数据曲面拟合,通过最佳拟合曲面,得到网格点上的近似实测值。为了能够达到最佳模拟效果,在拟合实测值曲面时,我们根据值的分布特点划分区域,在若干小区域上进行局部曲面拟合,以实现整体最优。每天分四个时段,一共有41天的实测值,这就决定了有164个曲面需要拟合,有1
8、64*2491个近似实测值需要计算,计算量极其巨大,必须利用高性能计算机和高效的编程算法完成该工作,以达到客观的分析与评价的效果。其次利用概率统计的均方差、均值等参数对两种预测方法进行评价。利用经、纬度值与高斯坐标的转换公式,将网格点的坐标进行了转换,但是转换后的坐标值十分大,给进一步的数据处理带来不便,所以我们以经、纬度值代替了高斯坐标值,我们进行数据处理的计算机是主频为2.1G、内存为512兆的计算机,使用的编程软件是maple 9.0。若,为网格点的经度及纬度点坐标矩阵,则有: Y=.由拟合曲面方程计算得出,网格点降雨量组成的观测降雨量距阵为Z=. (1)则两种预报方法下,所有网格点的降
9、雨量预测值组成的距阵为 =1,2 -= (2) (3) (4) 其中=1表示预测方法一对应的数值矩阵,=2表示预测方法二对应的数值矩阵;是由5347个网格点上的观测值与预测值之差组成的数值矩阵;是内数值的方差值;是41天所有次数总体上的平均方差.2 计算步骤 根据实测值的分布特点划分拟合区域,在小区域(非规则区域)上用二次曲面插值或高阶曲面拟合,设插值的二次曲面或拟合的曲面方程. 由计算出每一天每一时段下的近似观测降雨量距阵Z. 用=-、及计算出真实值与预报值的差值矩阵及. 用计算出均方差 . 用计算出与,则和的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方
10、法二好。所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:=0.9247218269e-1, .165797962696, 0.9247218269e-1, 0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174:= 0.921412432e-1, .1098
11、068392, 0.2234955063e-1, 0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1, .2851304286, 2.792810527, .2612701098, .2381007694, .2613774987(2) 方法一的均方差为: := .8311398371方案二的均方差: = .8417760978得 solve(0.3=0.6-r*(0.0452+0.0422),r);
12、 z1:=0.6-79.17656374*(x-120.2500)2+(y-33.7667)2; z2:=0.6-79.17656374*(x-120.2500)2+(y-33.7667)2; z3:=0.6-79.17656374*(x-120.2500)2+(y-33.7667)2; z4:=0.6-79.17656374*(x-120.2500)2+(y-33.7667)2; solve(0.15=0.3-r*(0.0452+0.0422),r); z4:=0.3-39.58828187*(x-118.1833)2+(y-31.0833)2; solve(5.1=10.2-r*(0.04
13、52+0.0422),r); z1:=10.2-1346.001584*(x-120.3167)2+(y-31.5833)2; z2:=10.2-1346.001584*(x-120.3167)2+(y-31.5833)2; z3:=10.2-1346.001584*(x-120.3167)2+(y-31.5833)2; z4:=10.2-1346.001584*(x-120.3167)2+(y-31.5833)2; solve(0.1=0.2-r*(0.0452+0.0422),r); z4:=0.2-26.39218791*(x-118.4000)2+(y-30.6833)2; z4:=s
14、olve(118.98332+30.61672+a*118.9833+b*30.6167+c=0.7000,118.58332+30.08332+a*118.5833+b*30.0833+c=1.8000,119.41672+30.88332+a*119.4167+b*30.8833+c=0.5); solve(0.05=0.1-r*(0.0452+0.0422),r); z1:=0.1-13.19609396*(x-119.4167)2+(y-30.8833)2; solve(2.9=5.8-r*(0.0452+0.0422),r); z4:=0.1-765.3734495*(x-118.2
15、833)2+(y-29.7167)2;(2)均方差求值程序: sq1:=0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.2586806182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0.2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0.2715902174; sum1:=add(i,i=sq1); ave1:=sum1/17; v
16、e1:=.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020; sq2:=0.0921412432,0.1098068392,0.02234955063,0.01592933205,0.2851304286,0.28513
17、04286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.2613774987,0.05183032655,0.2851304286,2.792810527,0.2612701098,0.2381007694,0.2613774987; (2)数据模拟图程序: with(linalg): l:=matrix(91,7,58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000,58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000
18、,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.
19、2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000
20、, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,582
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 试题 习题 雨量 预报 方法 评价 模型 数学 建模 论文
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。