协方差和相关系数.ppt
《协方差和相关系数.ppt》由会员分享,可在线阅读,更多相关《协方差和相关系数.ppt(16页珍藏版)》请在咨信网上搜索。
3.3协方差和相关系数,1.定义若E[X-E(X)][Y-E(Y)]存在,则称其为随机变量X与Y的协方差。记为cov(X,Y)或Cov(X,Y),即,Cov(X,Y)=E[X-E(X)][Y-E(Y)],协方差,2.协方差的计算,3.3.1协方差,离散型随机向量,其中P{X=xi,Y=yj}=piji,j=1,2,3,….,连续型随机向量,3.协方差计算公式,Cov(X,Y)=E(XY)-E(X)E(Y),(1)若X与Y独立,则Cov(X,Y)=0,注,(2)D(XY)=D(X)+D(Y)2Cov(X,Y),4.协方差的性质,(1)Cov(X,Y)=Cov(Y,X),(2)Cov(aX,bY)=abCov(X,Y),a,b为常数,(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y),(4)当X与Y相互独立时,有Cov(X,Y)=0,例1设二维随机变量的联合分布律为,,其中p+q=1,求相关系数XY.,解由(X,Y)的联合分布律,可得X与Y的边缘分布律为,均为0-1分布,于是有,所以,,求,解因为,同理可得,例2设二维(X,Y)随机变量的密度函数为,由协方差的性质(2)知,协方差取值的大小要受到量纲的影响,为了消除量纲对协方差值的影响,我们把X,Y标准化后再求协方差,1.定义对于随机变量X和Y,若D(X)≠0,D(Y)≠0,则称,为随机变量X和Y的相关系数(标准协方差)。,当ρXY=0时,称X与Y不相关。,(1)|ρXY|≤1;,(2)|ρXY|=1当且仅当P{Y=aX+b}=1,其中a,b为常数。,相关系数ρXY刻划了随机变量X和Y的线性相关程度。,3.3.1相关系数(标准协方差),2.性质,证明(1),,,,,,,即,,,,(2)由方差性质得,成立的充分必要条件为,,而,,,,,,,,,的充要条件是,即,从而,且,,,,于是由:,,得,,这说明X与Y是不相关的,但,显然,X与Y是不相互独立的,例3若X~N(0,1),Y=X2,问X与Y是否不相关?,解因为X~N(0,1),密度函数,为偶函数,所以,解X,Y的联合密度f(x,y)及边缘密度fX(x),fY(y)如下:,例4设(X,Y)服从二维正态分布,求X,Y的相关系数。,1.将一枚不均匀硬币投掷n次,以X和Y分别表示出现正面和反面的次数,则X和Y的相关系数为(A)-1;(B)0;(C);(D)1。,2.设随机变量X和Y独立同分布,记U=X+Y,V=X-Y,则U和V(A)不独立;(B)独立;(C)相关系数为0;(D)相关系数不为0。,3.设X是随机变量,Y=aX+b(a≠0),证明:,4.设随机变量X的概率密度为,求X与|X|的协方差,问X和|X|是否不相关,是否相互独立.,练习题,选例1,求ρXY,解E(X)=2,E(Y)=2;,E(X2)=9/2,E(Y2)=9/2;,D(X)=1/2,D(Y)=1/2。,E(XY)=,Cov(X,Y)=23/6–4=-1/6;,选例2设随机变量X的方差D(X)≠0且Y=aX+b(a≠0),求X和Y的相关系数ρXY,解,证明(1)因为,同样E(Y)=0,于是ρXY=0,所以X与Y不相关。,选例3已知(X,Y)的概率密度如下,试证X与Y既不相关,也不相互独立。,显然,fX(x)fY(y)≠f(x,y),因此,X与Y不相互独立。,(2),选例3已知(X,Y)的概率密度如下,试证X与Y既不相关,也不相互独立。,- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 协方差 相关系数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xiaol****an189】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xiaol****an189】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xiaol****an189】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【xiaol****an189】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文