1.2.1充分条件和必要条件(李用)专题培训课件.ppt
《1.2.1充分条件和必要条件(李用)专题培训课件.ppt》由会员分享,可在线阅读,更多相关《1.2.1充分条件和必要条件(李用)专题培训课件.ppt(48页珍藏版)》请在咨信网上搜索。
1、 同学们,当某一天你和你妈妈在街上遇到老师的时同学们,当某一天你和你妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:候,你向老师介绍你的妈妈说:“这是我的妈妈这是我的妈妈”。那。那么大家想一想这个时候你的妈妈还会不会补充说:么大家想一想这个时候你的妈妈还会不会补充说:“这这是我的孩子是我的孩子”呢?呢?不会了!为什么呢?不会了!为什么呢?因为前面你所介绍的她是你的妈妈就足以保证因为前面你所介绍的她是你的妈妈就足以保证你是她的你是她的 孩子。那么,这在数学中是一层什么样的孩子。那么,这在数学中是一层什么样的关系呢?今天我们就来学习这个有意义的课题关系呢?今天我们就来学习这个有意义的课题充分条件
2、与必要条件。充分条件与必要条件。【实例引入】音乐欣赏音乐欣赏我是一只鱼我是一只鱼提问:鱼非常需要水,没了水,鱼就提问:鱼非常需要水,没了水,鱼就 无法生存,但只有水,够吗?无法生存,但只有水,够吗?事例一事例一探究:探究:p:“有水有水”;q:“鱼能生存鱼能生存”判断判断“若若p,则,则q”和和“若若q,则,则p”的真假的真假一、引入一、引入一、引入一、引入6/4/2024 有一位母亲要给女儿做一有一位母亲要给女儿做一件衬衫,母亲带女儿去商店买件衬衫,母亲带女儿去商店买布,母亲问营业员:布,母亲问营业员:“要做一要做一件衬衫,应该买多少布料?件衬衫,应该买多少布料?”营业员回答:营业员回答:“
3、买三米足够了!买三米足够了!”引导分析:引导分析:p:有有3米布料米布料q:做一件衬衫做一件衬衫事例二:事例二:一、引入一、引入一、引入一、引入6/4/2024(2 2)因为若)因为若)因为若)因为若ab=0 ab=0 则应该有则应该有则应该有则应该有a=0 a=0 或或或或b=0b=0。所以并不能得到所以并不能得到所以并不能得到所以并不能得到a a一定为一定为一定为一定为0 0。例例例例 :判断下列命题的真假。判断下列命题的真假。判断下列命题的真假。判断下列命题的真假。(1 1)若)若)若)若xaxa2 2+b+b2 2,则,则,则,则x2ab x2ab。(2 2)若)若)若)若ab=0,a
4、b=0,则则则则a=0a=0。真命题真命题真命题真命题假命题假命题假命题假命题解解解解(1 1)因为若)因为若)因为若)因为若xaxa2 2+b+b2 2 ,而,而,而,而a a2 2+b+b2 2 2ab 2ab,所以可以,所以可以,所以可以,所以可以 得到得到得到得到 x2ab x2ab。【问题探究】如果命题如果命题“若若p则则q”为真,则记作为真,则记作如果命题如果命题“若若p则则q”为假,则记作为假,则记作(2 2)因为若)因为若)因为若)因为若ab=0 ab=0 则应该有则应该有则应该有则应该有a=0 a=0 或或或或b=0b=0。所以并不能得到所以并不能得到所以并不能得到所以并不能
5、得到a a一定为一定为一定为一定为0 0。例例例例 :判断下列命题的真假。判断下列命题的真假。判断下列命题的真假。判断下列命题的真假。(1 1)若)若)若)若xaxa2 2+b+b2 2,则,则,则,则x2ab x2ab。(2 2)若)若)若)若ab=0,ab=0,则则则则a=0a=0。真命题真命题真命题真命题假命题假命题假命题假命题解解解解(1 1)因为若)因为若)因为若)因为若xaxa2 2+b+b2 2 ,而,而,而,而a a2 2+b+b2 2 2ab 2ab,所以可以,所以可以,所以可以,所以可以 得到得到得到得到 x2ab x2ab。在真命题(在真命题(在真命题(在真命题(1 1)
6、中,)中,)中,)中,p p足以导致足以导致足以导致足以导致q q,也就是说条件,也就是说条件,也就是说条件,也就是说条件p p充分充分充分充分了。了。了。了。在假命题(在假命题(在假命题(在假命题(2 2)中条件)中条件)中条件)中条件p p不不不不充分充分充分充分。【问题探究】在真命题(在真命题(在真命题(在真命题(1 1)中,)中,)中,)中,q q 是是是是p p成立所必须具备的前提。成立所必须具备的前提。成立所必须具备的前提。成立所必须具备的前提。在假命题(在假命题(在假命题(在假命题(2 2)中,)中,)中,)中,q q不是不是不是不是p p成立所必须具备的前提。成立所必须具备的前
7、提。成立所必须具备的前提。成立所必须具备的前提。定义定义:如果命题:如果命题“若若p,则,则q”为真命题为真命题,即即p q,那么我们就说那么我们就说p是是q的的充分条件充分条件;q是是p的的必要条件必要条件【定义得出】充分性:条件是充分的,也就是说条件是充足的,足够充分性:条件是充分的,也就是说条件是充足的,足够的,足以保证的。符合的,足以保证的。符合“若若p则则q”为真(为真(p=q)的形式)的形式,即即“有之必成立有之必成立”。必要性:必要就是必须的,必不可少的。符合必要性:必要就是必须的,必不可少的。符合“若非若非q则则非非p”为真(非为真(非q=非非p)的形式,即)的形式,即“无之必
8、不成立无之必不成立”。注:注:p是是q的充分条件与的充分条件与q是是p的必要条件是的必要条件是完全等价完全等价的,它的,它们是同一个逻辑关系们是同一个逻辑关系“p=q”的不同表达方法。的不同表达方法。P10P10练习练习练习练习 用符号用符号用符号用符号 与与与与 填空。填空。填空。填空。(1 1)x x2 2=y=y2 2 x=yx=y;(2 2)内错角相等)内错角相等)内错角相等)内错角相等 两直线平行;两直线平行;两直线平行;两直线平行;(3 3)整数)整数)整数)整数a a能被能被能被能被6 6整除整除整除整除 a a的个位数字为偶数;的个位数字为偶数;的个位数字为偶数;的个位数字为偶
9、数;(4 4)ac=bc ac=bc a=ba=b例例例例1 1,下列,下列,下列,下列“若若若若p p,则,则,则,则q”q”形式的命题中,哪些命形式的命题中,哪些命形式的命题中,哪些命形式的命题中,哪些命题题题题 中的中的中的中的p p是是是是q q的充分条件?的充分条件?的充分条件?的充分条件?(1 1)若)若)若)若x=1x=1,则,则,则,则x x2 2 4x+3=0 4x+3=0;(2 2)若)若)若)若f f(x x)=x=x,则,则,则,则f f(x x)为增函数;)为增函数;)为增函数;)为增函数;(3 3)若)若)若)若x x 为无理数,则为无理数,则为无理数,则为无理数,
10、则x x2 2 为无理数为无理数为无理数为无理数解:命题(解:命题(解:命题(解:命题(1 1)()()()(2 2)是真命题,命题()是真命题,命题()是真命题,命题()是真命题,命题(3 3)是假命)是假命)是假命)是假命题,所以命题(题,所以命题(题,所以命题(题,所以命题(1 1)()()()(2 2)中的)中的)中的)中的p p是是是是q q的充分条件的充分条件的充分条件的充分条件.【典例演练】练习练习练习练习1 1:(1)(1)若两个三角形全等,则这两个三角形相似;若两个三角形全等,则这两个三角形相似;若两个三角形全等,则这两个三角形相似;若两个三角形全等,则这两个三角形相似;(2
11、)(2)若若若若x 5x 5,则,则,则,则x 10 x 10。解:命题解:命题解:命题解:命题(1 1)是真命题,命题()是真命题,命题()是真命题,命题()是真命题,命题(2 2)是假命题)是假命题)是假命题)是假命题 所以命题(所以命题(所以命题(所以命题(1 1)中的)中的)中的)中的p p是是是是q q的充分条件。的充分条件。的充分条件。的充分条件。例例例例2 2 下列下列下列下列“若若若若p p,则,则,则,则q”q”形式的命题中,哪些命题形式的命题中,哪些命题形式的命题中,哪些命题形式的命题中,哪些命题中的中的中的中的q q是是是是p p的必要条件?的必要条件?的必要条件?的必要
12、条件?(1)(1)若若若若x=yx=y,则,则,则,则x x2 2=y=y2 2。(2)(2)若两个三角形全等若两个三角形全等若两个三角形全等若两个三角形全等,则这两个三角形的面积相等则这两个三角形的面积相等则这两个三角形的面积相等则这两个三角形的面积相等.(3)(3)若若若若abab,则,则,则,则acbcacbc。解:命题解:命题解:命题解:命题(1 1)()()()(2 2)是真命题,命题()是真命题,命题()是真命题,命题()是真命题,命题(3 3)是假命)是假命)是假命)是假命题,所以命题(题,所以命题(题,所以命题(题,所以命题(1 1)()()()(2 2)中的)中的)中的)中的
13、q q是是是是p p的必要条件。的必要条件。的必要条件。的必要条件。练习练习练习练习2 2 下列下列下列下列“若若若若p p,则,则,则,则q”q”形式的命题中,哪些命形式的命题中,哪些命形式的命题中,哪些命形式的命题中,哪些命题中的题中的题中的题中的p p是是是是q q的必要条件?的必要条件?的必要条件?的必要条件?(1)(1)若若若若a+5a+5是无理数,则是无理数,则是无理数,则是无理数,则a a是无理数。是无理数。是无理数。是无理数。(2)(2)若(若(若(若(x-ax-a)()()()(x-bx-b)=0=0,则,则,则,则 x=ax=a。解:命题解:命题解:命题解:命题(1 1)(
14、)()()(2 2)的逆命题都是真命题,)的逆命题都是真命题,)的逆命题都是真命题,)的逆命题都是真命题,所以命题(所以命题(所以命题(所以命题(1 1)()()()(2 2)中的)中的)中的)中的p p是是是是q q的必要条件。的必要条件。的必要条件。的必要条件。分析:注意这里考虑的是命题分析:注意这里考虑的是命题分析:注意这里考虑的是命题分析:注意这里考虑的是命题中的中的中的中的p p是是是是q q的必要条件。的必要条件。的必要条件。的必要条件。所以应该分析下列命题的逆命题的真假性。所以应该分析下列命题的逆命题的真假性。所以应该分析下列命题的逆命题的真假性。所以应该分析下列命题的逆命题的真
15、假性。认清条件和结论。认清条件和结论。认清条件和结论。认清条件和结论。考察考察考察考察p qp q和和和和q pq p的真假。的真假。的真假。的真假。可先简化命题。可先简化命题。可先简化命题。可先简化命题。将命题转化为等价的逆否命题后再判断。将命题转化为等价的逆否命题后再判断。将命题转化为等价的逆否命题后再判断。将命题转化为等价的逆否命题后再判断。否定一个命题只要举出一个反例即可。否定一个命题只要举出一个反例即可。否定一个命题只要举出一个反例即可。否定一个命题只要举出一个反例即可。1 1 1、判别步骤:、判别步骤:、判别步骤:、判别步骤:、判别步骤:、判别步骤:2 2 2、判别技巧:、判别技巧
16、:、判别技巧:、判别技巧:、判别技巧:、判别技巧:判别充分条件判别充分条件判别充分条件判别充分条件与必要条件与必要条件与必要条件与必要条件【方法小结】p p q q,相当于,相当于,相当于,相当于P q P q,即,即,即,即 P q P q 或或或或 P P、q qP足以导致足以导致q,也就是也就是说条件说条件p充分了;充分了;q是是p成立所成立所 必须具必须具备的前提。备的前提。从集合的角度来理解充分条件、必要条件从集合的角度来理解充分条件、必要条件答:命题答:命题答:命题答:命题(1 1)为真命题:)为真命题:)为真命题:)为真命题:练习练习练习练习3 3,判断下列命题的真假:,判断下列
17、命题的真假:,判断下列命题的真假:,判断下列命题的真假:(1 1)x=2x=2是是是是x x2 2 4x+4=0 4x+4=0的必要条件;的必要条件;的必要条件;的必要条件;(2 2)圆心到直线的距离等于半径是这条)圆心到直线的距离等于半径是这条)圆心到直线的距离等于半径是这条)圆心到直线的距离等于半径是这条 直线为圆的切线的必要条件;直线为圆的切线的必要条件;直线为圆的切线的必要条件;直线为圆的切线的必要条件;(3 3)sinA=sinBsinA=sinB是是是是A=BA=B的充分条件;的充分条件;的充分条件;的充分条件;(4 4)abab 0 0是是是是a a 0 0的充分条件。的充分条件
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2 充分 条件 必要条件 李用 专题 培训 课件
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。