数码相机定位数学建模论文-毕业论文.doc
《数码相机定位数学建模论文-毕业论文.doc》由会员分享,可在线阅读,更多相关《数码相机定位数学建模论文-毕业论文.doc(46页珍藏版)》请在咨信网上搜索。
1、高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的
2、话): 20002028 所属学校(请填写完整的全名): 中南大学 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 2008 年 9 月 22 日赛区评阅编号(由赛区组委会评阅前进行编号):数码相机定位摘 要对于问题一,我们建立了两个模型,求当坐标系原点取在该相机的光学中心时,靶标上圆的圆心在该相机像平面的像坐标。一个是椭圆最小二乘法拟合模型(模型一),这个模型中我们利用了网格纸选点算法和matlab软件函数取点算法两种算法,这两个算法均是通过从像平面中选取六个点的坐标值,代入利用最小二乘法建立的方程组(9)式中,求得了拟合椭圆方程的参数,然
3、后通过式(2)、式(3)的转换公式得到椭圆中心的坐标;另一个模型是直线逼近模型(模型二),将相片转换为tiff格式后直接调用软件matlab6.0中的imread函数,取得相片中的若干个椭圆区域,然后分别在不同区域内用两条水平线和两条竖直线去与椭圆相切,求出相切交点的坐标,由椭圆对称性可知,两条过对称切点的直线会交于椭圆中心,则椭圆的中心坐标可以表示成.问题二是在问题一的基础上进行求解,将相关数据代入模型中得出了椭圆最小二乘法拟合模型和直线逼近模型的解,结果分别见表4和表9。问题三,在模型一和模型二中,由于包含误差较大样本点在内的所有样本点都参与运算,所以会对椭圆拟合的最后结果产生偏差。针对这
4、种情况,采用随机理论的思想,先随机选取6个点拟合椭圆,然后计算与此椭圆匹配的所有样本点个数。重复此过程一定次数(一般选取100200次),匹配样本点多的椭圆即为最优椭圆,由此构造了一种快速准确剔除误差较大样本点的改进椭圆拟合随机化算法,并通过实例验证了算法的精度和稳定性,其中精度检验时最大误差为0.73%,稳定性检验时最大误差为3.7%,说明模型能够有效地处理包含有较大比例误差点的样本空间,拟合出具有高精度的椭圆,并且该算法的速度能够满足实时性的要求。问题四属于双目定位问题范畴,可由常规的摄像机标定问题进行反推求解,常规的摄像机标定问题是将像素坐标系信息(如相片)转换到世界坐标系信息(如实物)
5、的三维坐标,而这里是将世界坐标系信息(靶标上的圆心)向像素坐标系信息转换,从而测定两部固定的数码相机的相对位置。我们通过已知的实物和相片信息然后利用空间坐标系转换公式求解得到由旋转距阵和自由平移向量组成的两部相机的外部参数矩阵,进而得到两部数码相机的光心坐标变换模型(见式(29),由此即得两相机的相对位置。关键词:最小二乘法、图像网格处理、取色器、标定、旋转距阵一 问题重述数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄
6、得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。标定的一种做法是:在一块平板上画若干个点, 同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,如图1所示,所以必须从靶标上的这些圆的像
7、中把圆心的像精确地找到,标定就可实现。 图 1 靶标上圆的像我们设计靶标如下,取1个边长为的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,为半径作圆。以AC边上距离A点处的B为圆心,为半径作圆,如图2所示。图 2 靶标示意图用一位置固定的数码相机摄得其像,如图3所示。图3 靶标的像要求:(1) 建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的光学中心,x-y平面平行于像平面;(2) 对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标, 该相机的像距(即光学中心到像平面的距离)是1577个像素单位(1毫米约为3.78个像素单
8、位),相机分辨率为;(3) 设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4) 建立用此靶标给出两部固定相机相对位置的数学模型和方法。二 问题分析2.1问题背景分析数码相机在计算机视觉中的应用逐渐普及和深入,在应用中数码相机的标定是相当重要的。计算机视觉是一门新兴的学科。随着计算机硬件、软件、图像采集、处理技术的迅速发展,计算机视觉的理论和技术已被广泛地应用于医学图像处理、机器人技术、文字识别、工业检侧、军事侦察、地理勘察和现场测量等。计算机视觉在多种测量中的应用是一种定量分析系统,有确定的精度要求。一般运用于现场不可到达、现场复杂不便直接测量、保留现场状态以便复测、补测和事后
9、重构现场等场合。通常人们把摄像机和胶片相机作为获取原始图像的主要设备,随着数码相机的出现和发展,在许多场合人们已逐渐采用数码相机作为主要的图像采集设备。这主要是由于数码相机有如下几个特点:有较多像素的CCU;可以根据测量的需要选择不同的像素大小;可直接与计算机进行通讯;可选定多种焦距进行定焦距拍摄。上述特点,给图像采集和图像处理带来了许多方便之处。在应用计算机视觉的测量系统中,无论是采用摄像机还是数码相机作为原始图像的采集设备,都必须进行系统标定。系统标定是应用计算机视觉进行现场测量和图像处理的第一步,也是关键的一步。标定矩阵的精度直接影响到最终的测量精度。国内外许多学者对此做了大量的研究,提
10、出了多种利用摄像机作为输入设备的标定方法。2.2问题要求分析对于问题一,题目要求确定靶标上圆的圆心在该相机像平面的像坐标,这里坐标原点是取在该相机的光学中心,我们若以光轴所在直线为轴,则所求靶标上圆的圆心在相机像平面上的纵坐标是相同的(在这里为该相机的像距,是一个固定值),所以只需求各和坐标即可,由实物与像之间的关系,在只考虑几乎理想状态下,我们可以试着确定相片上椭圆的中心坐标,并且认为靶标上圆的圆心在该相机像平面的像坐标应该是和椭圆的中心坐标很接近。问题二是在问题一建立的模型上赋予具体的数值进行求解,因此只需将题目中所给数据代入第一问的模型中即可有解决,值得注意的是在理想光学成像系统下焦距即
11、是像距。问题三是要求设计一种方法来给第一问设计的模型进行检验,同时还要求这种方法具有一定的精度和稳定性,并能计算出来。问题的难点在于这里没有一个标准又不能进行真实模拟,鉴于此,我们决定采用计算机仿真的思想,即给出一个确定解同时产生一系列随机数,用该方法求得的一组值来达到分析的目的。对于问题四,由于这是属于双目定位问题。根据相机成像的原理,我们利用空间坐标系的相互转换就应该可以实现在靶标给出的条件下确定两部固定相机的相对位置。三 模型的建立及求解数码相机图像拍摄实际上是一个光学成像过程,而且光学成像的理论模型是针孔模型。我们将此成像过程分为3个步骤、隶属于4个坐标系。这四个坐标系分别为: (1)
12、世界坐标系根据自然环境所选定的坐标系,坐标值用表示。 (2)图像坐标系坐标原点在图像平面的中心,X轴、Y轴分别为平行于图像平面的两条垂直边,坐标值用表示。 (3)像素坐标系坐标原点在图像平面的左上角,X轴、Y轴分别平行于图像坐标系的X轴和Y轴,坐标值用来表示,且为离散的整数值。 (4)光心坐标系以相机的光心为坐标原点,X轴、Y轴分别平行于图像坐标系的X轴和Y轴,相机的光轴为Z轴,坐标值用表示。由实物到相片的形成经过了3个步骤,是分别将世界坐标系中的信息转换到光心坐标系,再由光心坐标系转换到图像坐标系,最后由图像坐标系转换到像素坐标系。3.1 问题一的模型3.1.1基本假设1) 考虑最小二乘法的
13、要求,我们假设从图像坐标系中选取的点的坐标值的随机误差服从正态分布。2) 图3中的椭圆都是标准椭圆,不存在畸变等因素,属于理想图形。3) 相片没有损坏,保存完好,图像清晰3.1.2符号说明椭圆中心位置椭圆长轴和短轴a椭圆长轴的转角3.1.3模型的准备1)椭圆的表示方法 在二维平面坐标系中,椭圆一般可以用2种形式来表示。一种是利用圆锥曲线方程的代数形式表示,即: (1) 另外一种更直观的方式是用平面坐标系的几何参数表示,即椭圆中心位置 ,长轴和短轴,长轴的转角a。二维平面里的任意椭圆都可以用这5个参数唯一确定, 参数的几何意义如图4所示。图4 二维平面椭圆的表示两种表示形式的参数可用式(2)式(
14、6)转换。 (2) (3) (4) (5) (6)2)坐标转换分析根据这种转换关系,可以先选取图3中椭圆中点的坐标值,求得等式(1)中参数,再通过转换,得到图3中各个椭圆中点在像素坐标系中的坐标值,最后由坐标平移求出各个椭圆中心在图像坐标系的的坐标值。位置如图5图5 图像坐标系下各个点位置图3.1.4模型的建立建立两个模型,模型一中用到最小二乘法来拟合椭圆函数,将得到的拟合函数的参数,用式(2)、(3)转换得到题中要求坐标系情况下椭圆圆心坐标。在选取点拟合过程中,考虑对精度的要求,给出在精度要求不高情况下,用网格取点法和高精度要求中的计算机像素取点法两个算法;模型二中根据标准椭圆对称性,用ma
15、tlab软件中图像处理库函数建立模型,提高运行速度。模型一椭圆最小二乘法拟合最小二乘法椭圆拟合是较常用的椭圆拟合方法。最小二乘法是在随机误差为正态分布时,由最大似然法推出的一个最优估计技术, 它可使测量误差的平方和最小, 因此也被视为从一组测量值中求出一组未知量的最可信赖的方法之一. 最小二乘技术主要是寻找参数集合,从而最小化数据点与椭圆之间的距离度量. 这里的距离度量常见的有几何距离和代数距离。几何距离表示某点到曲线最近点的距离。平面内某点到方程所代表曲线的代数距离就是。以下是以代数距离作为距离度量介绍最小二乘法。假设一般形式的椭圆方程如式(1)所示, 为了避免零解,并将解的任何整数倍都视为
16、对同一椭圆的表述,对参数做一些限制,约束条件设。显然,直接应用上述方程对边缘检测后的离散点进行最小二乘处理, 就可以得到方程中的各系数,也即,求目标函数 (7)的最小值来确定各系数。再由极值原理,欲值为最小,必有 (8)由此建立如下数学规划模型: 我们用matlab 6.0编程并用消元法求解上述线性方程组,最终求得方程系数的值。模型二 直线逼近模型每个椭圆用两条水平直线和两条竖直直线逼近椭圆,使得四条直线与椭圆相切,得出每个椭圆水平、竖直边界点。Imread函数对处理的函数有特定的要求,在用imread函数调用图片之前,先用photoshop软件将图3图片格式转换为tiff格式并无任何压缩限制
17、,然后用imread函数取得图片中椭圆区域。再在图中划分出每个椭圆的边界,如图6。图6 椭圆边界划分对每个区域用imread函数取得的图片数据中,分区域0HFJ,HIGF,ILKG,DKQN,JEMP在每个区域用水平线和竖直线去与椭圆相切,可以求出相切交点的坐标(以椭圆D为例)如图7。图7 椭圆D相切交点位置其中由椭圆对称性可知,直线与直线交于一点且过椭圆中心,则椭圆中心可以用坐标表示,得到如下数学模型(在图像坐标系下): (10)3.1.5模型的求解模型一的求解模型中首先要解决的问题是得到六个点,用这六个点来算出等式(7)中参数六个点的值。对于选取这六个点,给出一下两个算法;1) 网格纸选点
18、算法用一个网格纸放在图形上面,建立一个坐标系,确定每一个网格对应像素,再取网格顶点正好落在每个椭圆边界处,当取不到足够的点时,可以移动网格纸位置,使得足够多的点落在网格顶点,如图8所示图8 网格纸及点选取算法具体实现步骤:Step1放置网格纸,使尽可能多的网格顶点落在椭圆边缘Step2根据相机分辨率,设置网格坐标刻度Step3选取6个点的坐标值Step4代入式(8)中,得到关于系数的线性方程组Step5用消元法求得每个椭圆对应的值Step6通过式(2),(3)求出每个椭圆圆心在下的坐标值Step7坐标变换,得到在像素坐标系下椭圆圆心坐标值2)matlab软件函数取点算法用photoshop软件
19、将图3格式转换为tiff格式,用matlab图形工具箱中的imread函数取得图片中椭圆区域,再在图片区域找出椭圆边界上6个点的坐标值,用消元法求出最终结果 算法实现步骤:Step1用photoshop软件将图3格式转为tiff格式并无需任何压缩Step2用imread函数调用转换后图片Step3从得到的图片信息中提取出每个椭圆边界点(代码见附录1)Step4从每个椭圆边界点中取出6个点的坐标值(代码见附录2)Step5用matlab软件求出式(3)的方程组形式,并用消元法求得系数值Step6通过式(2),(3)和坐标变换,最终得到在像素坐标系下椭圆圆心坐标值注:消元法是以函数形式给出,代码见
20、附录3模型二的求解在imread图像数据中,可以直接得到的值,代入式(10)便得到椭圆D的圆心在图像坐标系下的坐标。相继也可以求出靶标上其他椭圆圆心在图像坐标系下的坐标值。算法具体实现步骤:Step1用photoshop软件将图3格式转为tiff格式并无需任何压缩Step2用imread函数调用转换后图片Step3将图片按椭圆位置分块Step4在每一块中用matlab找出椭圆水平和竖直方向最大值和最小值Step5用式(10)求出每个椭圆中心在图2坐标系下的坐标值Step6坐标变换,最终得到在像素坐标系下椭圆圆心坐标值3.1.5 模型的评价对于模型一,首先在图像坐标系中对图像进行图像网格处理,得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数码相机 定位 数学 建模 论文 毕业论文
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。