恒成立存在性问题.doc
《恒成立存在性问题.doc》由会员分享,可在线阅读,更多相关《恒成立存在性问题.doc(11页珍藏版)》请在咨信网上搜索。
1、专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:恒成立;2、能成立问题的转化:能成立;3、恰成立问题的转化:在M上恰成立的解集为M另一转化方法:若在D上恰成立,等价于在D上的最小值,若在D上恰成立,则等价于在D上的最大值.4、设函数、,对任意的,存在,使得,则5、设函数、,对任意的,存在,使得,则6、设函数、,存在,存在,使得,则7、设函数、,存在,存在,使得,则8、若不等式在区间D上恒成立,则等价于在区间D上函数和图象在函数图象上方;9、若不等式在区间D上恒成立,则等价于在区间D上函数和图象在函数图象下方;题型一、常见方法1、已知函数,其中,1)对任意,都有恒成立,求实数的取值范围;2
2、)对任意,都有恒成立,求实数的取值范围; 2、设函数,对任意,都有在恒成立,求实数的取值范围3、已知两函数,对任意,存在,使得,则实数m的取值范围为 题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足的所有实数p,求使不等式恒成立的x的取值范围。2、已知函数是实数集上的奇函数,函数是区间上的减函数,()求的值;()若上恒成立,求的取值范围;题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)1、当时,不等式恒成立,则的取值范围是 .题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)1、若对任意,不等式恒成立,则实数的取值范围是_2、已知函数,在
3、恒有,求实数的取值范围。题型五、不等式能成立问题(有解、存在性)的处理方法若在区间D上存在实数使不等式成立,则等价于在区间D上;若在区间D上存在实数使不等式成立,则等价于在区间D上的.1、存在实数,使得不等式有解,则实数的取值范围为_。2、已知函数存在单调递减区间,求的取值范围小结:恒成立与有解的区别恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。不等式对时恒成立,。即的上界小于或等于;不等式对时有解,。 或的下界小于或等于;不等式对时恒成立,。即的下界大于或等于;不等式对时有解,.。 或的上界大于或等于;课后作业:1、设,若对于任意的,都有满
4、足方程,这时的取值集合为( )(A) (B) (C) (D)2、若任意满足的实数,不等式恒成立,则实数的最大值是 _ . 3、不等式有解,则的取值范围是 4、不等式在内恒成立,求实数a的取值范围。5、已知两函数,。(1)对任意,都有)成立,求实数的取值范围;(2)存在,使成立,求实数的取值范围;(3)对任意,都有,求实数的取值范围;(4)存在,都有,求实数的取值范围;6、设函数. ()求函数的单调区间和极值; ()若对任意的不等式成立,求a的取值范围。7、已知A、B、C是直线上的三点,向量,满足:.(1)求函数yf(x)的表达式;(2)若x0,证明:f(x);(3)若不等式时,及都恒成立,求实
5、数m的取值范围8、设,且(e为自然对数的底数)(I)求 p 与 q 的关系;(II)若在其定义域内为单调函数,求 p 的取值范围;(III)设,若在上至少存在一点,使得成立, 求实数 p 的取值范围.参考答案:题型一、常见方法1、已知函数,其中,1)对任意,都有恒成立,求实数的取值范围;2)对任意,都有恒成立,求实数的取值范围;【分析:】1)思路、等价转化为函数恒成立,在通过分离变量,创设新函数求最值解决2)思路、对在不同区间内的两个函数和分别求最值,即只需满足即可简解:(1)由成立,只需满足的最小值大于即可对求导,故在是增函数,所以的取值范围是 2、设函数,对任意,都有在恒成立,求实数的取值
6、范围分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数以本题为例,实质还是通过函数求最值解决方法1:化归最值,;方法2:变量分离,或;方法3:变更主元,简解:方法1:对求导,由此可知,在上的最大值为与中的较大者,对于任意,得的取值范围是3、已知两函数,对任意,存在,使得,则实数m的取值范围为 解析:对任意,存在,使得等价于在上的最小值不大于在上的最小值0,既,题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足的所有实数p,求使不等式恒成立的x的取值范围。解:不等式即,设,则在-2,2上恒大于0,故有:或2、已知函数是实数集上的奇函数,函数是区间上的减函
7、数,()求的值;()若上恒成立,求的取值范围;O ()分析:在不等式中出现了两个字母:及,关键在于该把哪个字母看成是一个变量,另一个作为常数。显然可将视作自变量,则上述问题即可转化为在内关于的一次函数大于等于0恒成立的问题。()略解:由()知:,在上单调递减,在上恒成立,只需,(其中)恒成立,由上述结论:可令,则,而恒成立,。题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)1、当时,不等式恒成立,则的取值范围是 .解析: 当时,由得.题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)1、若对任意,不等式恒成立,则实数的取值范围是_解析:对,不等式恒成立、则由一次函数性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 成立 存在 问题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。