随机变量及其分布列[1].版块三.离散型随机变量的期望与方差1.学生版.doc
《随机变量及其分布列[1].版块三.离散型随机变量的期望与方差1.学生版.doc》由会员分享,可在线阅读,更多相关《随机变量及其分布列[1].版块三.离散型随机变量的期望与方差1.学生版.doc(19页珍藏版)》请在咨信网上搜索。
1、(完整版)随机变量及其分布列1.版块三.离散型随机变量的期望与方差1.学生版数学期望知识内容1 离散型随机变量及其分布列离散型随机变量如果在试验中,试验可能出现的结果可以用一个变量来表示,并且是随着试验的结果的不同而变化的,我们把这样的变量叫做一个随机变量随机变量常用大写字母表示如果随机变量的所有可能的取值都能一一列举出来,则称为离散型随机变量离散型随机变量的分布列将离散型随机变量所有可能的取值与该取值对应的概率列表表示:我们称这个表为离散型随机变量的概率分布,或称为离散型随机变量的分布列2几类典型的随机分布两点分布如果随机变量的分布列为其中,则称离散型随机变量服从参数为的二点分布二点分布举例
2、:某次抽查活动中,一件产品合格记为,不合格记为,已知产品的合格率为,随机变量为任意抽取一件产品得到的结果,则的分布列满足二点分布两点分布又称分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布超几何分布一般地,设有总数为件的两类物品,其中一类有件,从所有物品中任取件,这件中所含这类物品件数是一个离散型随机变量,它取值为时的概率为,为和中较小的一个我们称离散型随机变量的这种形式的概率分布为超几何分布,也称服从参数为,,的超几何分布在超几何分布中,只要知道,和,就可以根据公式求出取不同值时的概率,从而列出的分布列二项分布1独立重复试验如果每次试验,只考虑有两个可能的结果
3、及,并且事件发生的概率相同在相同的条件下,重复地做次试验,各次试验的结果相互独立,那么一般就称它们为次独立重复试验次独立重复试验中,事件恰好发生次的概率为2二项分布若将事件发生的次数设为,事件不发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率是,其中于是得到的分布列由于表中的第二行恰好是二项展开式各对应项的值,所以称这样的散型随机变量服从参数为,的二项分布,记作二项分布的均值与方差:若离散型随机变量服从参数为和的二项分布,则,正态分布1 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线在随机变量中,如果把样本中的任一数据看作随机变量,则这条曲
4、线称为的概率密度曲线曲线位于横轴的上方,它与横轴一起所围成的面积是,而随机变量落在指定的两个数之间的概率就是对应的曲边梯形的面积2正态分布定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布服从正态分布的随机变量叫做正态随机变量,简称正态变量正态变量概率密度曲线的函数表达式为,其中,是参数,且,式中的参数和分别为正态变量的数学期望和标准差期望为、标准差为的正态分布通常记作正态变量的概率密度函数的图象叫做正态曲线标准正态分布:我们把数学期望为,标准差为的正态分布叫做标准正态分布重
5、要结论:正态变量在区间,,内,取值的概率分别是,正态变量在内的取值的概率为,在区间之外的取值的概率是,故正态变量的取值几乎都在距三倍标准差之内,这就是正态分布的原则若,为其概率密度函数,则称为概率分布函数,特别的,称为标准正态分布函数标准正态分布的值可以通过标准正态分布表查得分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可3离散型随机变量的期望与方差1离散型随机变量的数学期望定义:一般地,设一个离散型随机变量所有可能的取的值是,,,这些值对应的概率是,,,则,叫做这个离散型随机变量的均值或数学期望(简称期望)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平2离散型随机变
6、量的方差一般地,设一个离散型随机变量所有可能取的值是,,这些值对应的概率是,,,则叫做这个离散型随机变量的方差离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小(离散程度)的算术平方根叫做离散型随机变量的标准差,它也是一个衡量离散型随机变量波动大小的量3为随机变量,为常数,则;4 典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量的期望取值为,在次二点分布试验中,离散型随机变量的期望取值为二项分布:若离散型随机变量服从参数为和的二项分布,则,超几何分布:若离散型随机变量服从参数为的超几何分布,则,4事件的独立性如果事件是否发生对事件发生的概率没有影响,即,
7、这时,我们称两个事件,相互独立,并把这两个事件叫做相互独立事件如果事件,相互独立,那么这个事件都发生的概率,等于每个事件发生的概率的积,即,并且上式中任意多个事件换成其对立事件后等式仍成立5条件概率对于任何两个事件和,在已知事件发生的条件下,事件发生的概率叫做条件概率,用符号“来表示把由事件与的交(或积),记做(或)典例分析【例1】 投掷1枚骰子的点数为,则的数学期望为( )A B C D【例2】 同时抛掷枚均匀硬币次,设枚硬币正好出现枚正面向上,枚反面向上的次数为,则的数学期望是( )A B C D【例3】 从这6个数中任取两个,则两数之积的数学期望为 【例4】 一射手对靶射击,直到第一次命
8、中为止,每次命中率为,现共有颗子弹,命中后尚余子弹数目的期望为( )A B C D【例5】 一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为(、),已知他投篮一次得分的数学期望为2(不计其它得分情况),则的最大值为( )ABCD【例6】 一家保险公司在投保的50万元的人寿保险的保单中,估计每一千保单每年有15个理赔,若每一保单每年的营运成本及利润的期望值为200元,试求每一保单的保费【例7】 甲乙两人独立解出某一道数学题的概率依次为,已知该题被甲或乙解出的概率为,甲乙两人同时解出该题的概率为,求:;解出该题的人数的分布列及【例8】 甲、乙、丙三人参加了一家公司的招聘面试,面
9、试合格者可正式签约,甲表示只要面试合格就签约乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约设每人面试合格的概率都是,且面试是否合格互不影响求签约人数的数学期望【例9】 某批发市场对某种商品的周销售量(单位:吨)进行统计,最近周的统计结果如下表所示:周销售量234频数205030根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;已知每吨该商品的销售利润为千元,表示该种商品两周销售利润的和(单位:千元)若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望【例10】 某项考试按科目、科目依次进行,只有当科目成绩合格时,才可继续参加科目的考试已知每个科目只允许有一次补考
10、机会,两个科目成绩均合格方可获得证书现某人参加这项考试,科目每次考试成绩合格的概率均为,科目每次考试成绩合格的概率均为假设各次考试成绩合格与否均互不影响在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望【例11】 某同学如图所示的圆形靶投掷飞镖,飞镖落在靶外(环数记为0)的概率为,飞镖落在靶内的各个点是椭机的已知圆形靶中三个圆为同心圆,半径分别为、,飞镖落在不同区域的环数如图中标示设这位同学投掷一次一次得到的环数这个随机变量,求的分布列及数学期望【例12】 某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为商场经销一件该商品,采用期付款,其利润为元;
11、分期或期付款,其利润为元;分期或期付款,其利润为元表示经销一件该商品的利润 求事件:“购买该商品的位顾客中,至少有位采用期付款”的概率; 求的分布列及期望【例13】 学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有人,会跳舞的有人,现从中选人设为选出的人中既会唱歌又会跳舞的人数,且求文娱队的人数;写出的概率分布列并计算期望【例14】 一接待中心有、四部热线电话已知某一时刻电话、占线的概率为,电话、占线的概率为,各部电话是否占线相互之间没有影响假设该时刻有部电话占线,试求随机变量的概率分布和它的期望【例15】 某城市有甲、乙、丙个旅游景点,一位客人游览这三个景点的概率分别是,且客人是否游
12、览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值求的分布及数学期望【例16】 某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰已知某选手能正确回答第一、二、三轮的问题的概率分别为、,且各轮问题能否正确回答互不影响 求该选手被淘汰的概率; 该选手在选拔中回答问题的个数记为,求随机变量的分布列与数学期望(注:本小题结果可用分数表示)【例17】 在某次测试中,甲、乙、丙三人能达标的概率分别为,在测试过程中,甲、乙、丙能否达标彼此间不受影响求甲、乙、丙三人均达标的概率;求甲、乙、丙三人中至少一人达标的概率;设表示测试结束后达标人数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机变量 及其 分布 版块 离散 期望 方差 学生
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。