高中数学学业水平考试复习知识点及基础题型练习.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 学业 水平 考试 复习 知识点 基础 题型 练习
- 资源描述:
-
第一课时 集 合 一、目的要求: 知道集合的含义;了解集合之间的包含与相等的含义;知道全集与空集的含义;理解两个集合的并集与交集的含义及会运算;理解补集的含义及求法;理解用Venn图表示集合的关系及运算。 二、要点知识: 1、 叫集合。 2、集合中的元素的特性有① ② ③ 。 3、集合的表示方法有① ② ③ 。 4、 叫全集; 叫空集。 5、集合与集合的基本关系与基本运算 关系或运算 自然语言表示 符号语言 图形语言 6、区分一些符号 ①∈与 ② ③。 三、课前小练 1、下列关系式中① ② ③ ④ ⑤ ⑥ 其中正确的是 。 2、用适当方法表示下列集合 ①抛物线上的点的横坐标构成的集合 。 ②抛物线上的点的纵坐标构成的集合 。 ③抛物线上的点构成的集合 。 ④的解集 。 3、,,= 。 4、已知集合,求①= ②= ③= ④= 5、图中阴影部分表示的集合是( ) A、 B、 C、 D、 四、典例精析 例1、若集合,,则= 例2、已知,,,,则A可以是( ) A、 B、 C、 D、 例3、设, (1)求,求的值; (2)若,求的取值范围。 例4、已知全集,求集合 五、巩固练习 1、若,,则A与B的关系是 。 2、设集合,,求= 3、设集合,,求= 4、设集合M与N,定义:,如果,,则 。 5、(选作)已知集合,且,求实数的取值范围。 第二课:函数的基本概念 一 目的与要求: 了解映射的概念,了解函数的概念,理解掌握求函数的定义域和值域,理解函数的表示方法,了解简单的分段函数及其应用。 二 要点知识: 1.映射的概念:设A、B是两个非空集合,如果按照某一种确定的对应关系f,使得对于集合A中的_____________,在集合B中都有_____________的元素y与之对应,那么称对应从集合A到B的一个映射。 2.函数的概念:设A、B是两个非空____集,如果按照某一种确定的对应法则f,使得对于集合A中的___________,在集合B中都有_________的元素y与x对应,那么称从集合A到集合B的函数。其中x的_________叫做函数的定义域,____________叫做值域。 3.函数的三要素为______________; ______________; ____________. 4.函数的表示方法有____________; ______________; _____________. 三.课前小练 1.垂直于x轴的直线与函数的图像的交点的个数为( )个 A 0; B 1; C 2; D 至多一个 2.下列函数中与是同一函数的是( ) A ; B; C ; D 3函数的定义域是______________ 4 则 四.典型例题分析 1.求下列函数的定义域: (2) 2.求下列函数的值域: 1) 2) () 3) 4) 3.已知函数分别由下列表格给出: 1 2 3 3 2 1 1 2 3 2 1 1 则, 当时,则=______________ 4.如图:已知底角为45°的等腰梯形ABCD, 底边BC长7cm腰长为cm,当一条垂 L A D 直于底边BC(垂足为F)的直线L从左至 右移动(L与梯形ABCD有公共点)时,直 E 线L把梯形分成两部分,令BF=x,试写出 左边面积y与x的函数关系式。 B F C 五、巩固练习 1.求函数定义域 2.已知 3.画出下列函数的图象 1) 2) 4.某公司生产某种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益函数满足函数R(x),其中x是仪器的月产量,请将利润表示为月产量的函数。 第三课时:函数的奇偶性和单调性 一、目的要求: 理解函数的单调性,最大值,最小值及其几何意义; 理解函数的奇偶性. 利用函数的图象理解和探究函数的性质. 二、要点知识: 1、设函数f(x)定义域是I,若DI,对于D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1) f(x2),则称f(x)在D上是增函数,若都有f(x1) f(x2),则称f(x)在D上为减函数. 2、 叫奇函数; 叫偶函数. 3、奇函数的图象关于 成 对称,若奇函数的定义域含有数0则必有 . 4、偶函数的图象关于 成 对称. 三、课前小结: 1、给出四个函数f(x)=x+1, f(x)= , f(x)=x2, f(x)=sinx其中在(0,+)上是增函数的有( ) A.0个, B.1个, C.2个, D.3个. 2、已知f(x)是定义在[-6,6]上的偶函数且f(3)>f(1),则有( ) A.f(0)<f(6). B.f(3)>f(2) C.f(-1)<f(3) D.f(2)>f(0) 3、已知f(x)=a-是定义在R上的奇函数,则a= . 4、若函数f(x)=(x+1)(x-a)为偶函数,则a= . 四、典例分析: 1、 判定下列函数的奇偶性; f(x)= f(x)=lg 2、设奇函数f(x)在(0, +)上为增函数f(1)=0,则不等式f(x)<0的解集为 3、已知函数f(x)=ax5+bsinx+3,且f(3)=1,则f(-3)= 4、定义在R上的偶函数f(x),对任意x1,x2[0,+), x1≠x2有,则 A.f(3)<f(-2)<f(1), B .f(1)<f(-2)<f(3) C. f(-2)<f(1)<f(3) D .f(3)<f(1)<f(-2) 5、函数f(x)=x+ 证明f(x)在(0,2)上单调递减,并求f(x)在[,1]上的最值 判断f(x)的奇偶性,并证明你的结论 函数f(x) =x+ (x<0)有最值吗?如有求出最值. 五、巩固练习: 1,已知函数f(x)=ax2+bx+3a+b在定义域[a-1,2a]上是偶函数,则a= b= . 2,已知f(x)是定义在(-,+)上的偶函数当x∈(-,0)时f(x)则f(x)=x-x4,当x∈(0,+ )时f(x)= . 3,下列函数中既是奇函数,又在区间(0,+ )上单调递增的是( ) A,y=sinx B,y=-x2 C,y=ex D,y=x3 4,已知奇函数f(x)在定义域[-2,2]内递减,求满足f(1-m)+ f(1-m2)<0的实数m的取值范围 5,已知f(x)= (a,b, c∈Z)是奇函数, f(1)=2, f(2)<3, 求a,b,c的值. 第四课时 指数与指数幂的运算 一、目的要求:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算. 二、要点知识: 3 三、课前小练: 1.化简的结果是( ) A. B. C. 3 D.5 2.下列根式中,分数指数幂的互化,正确的是( ). A. B. C. D. 3.下列各式正确的是( ). A. B. C. D. 4、求下列各式的值 四、典例精析: 例1、求下列各式的值 (1)(2) (3) (,且) 例2、化简:(1); (2). (3); 例3、已知,求下列各式的值. 五、巩固练习: 1.化简求值:(1); (2). 2.计算,结果是( ). A.1 B. C. D. 3.计算 . 4(选做)、求值: 第五课时 指数函数及其性质 一、目的要求:理解指数函数的概念和意义,能具体指数函数的图像,探索并理解指数函数的单调性与特殊点,掌握指数函数的性质. 在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. 掌握指数函数的性质及应用. 二、要点知识: 1、 2、 三、课前小练: 1、下列函数哪些是指数函数(填序号): (1); (2); (3); (4);(5); (6); (7) (8); (9)且. 2.下列各式错误的是( ) A、 B、 C、 D、 3.已知,在下列不等式中成立的是( ). A. B. C. D. 4.函数y=ax+1(a>0且a≠1)的图象必经过点( ). A.(0,1) B. (1,0) C.(2,1) D.(0,2) 5.设满足,下列不等式中正确的是( ). A. B. C. D. 四、典例精析: 例1 在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=的图象的关系。 ⑴y=与y=. ⑵y=与y= 例2比较下列各题中的个值的大小 例3求下列函数的定义域、值域 (1) (2) (3); 五、巩固练习: 1.世界人口已超过56亿,若千分之一的年增长率,则两年增长的人口可相当于一个( ). A. 新加坡(270万) B. 香港(560万) C. 瑞士(700万) D. 上海(1200万) 2.函数的定义域为 ;函数的值域为 . 3.如果指数函数y=在x∈R上是减函数,则a的取值范围是( ). A.a>2 B.a<3 C.2<a<3 D.a>3 4.某工厂去年12月份的产值是去年元月份产值的m倍,则该厂去年产值的月平均增长率为( ). A. m B. C. D. 5(选做).使不等式成立的的取值范围是( ). A. B. C. D. 6(选做).函数的单调递减区间为( ). A. B. C. D. 第六课时 对数与对数的运算 一、目的要求: 理解对数的概念;能够说明对数与指数的关系;掌握对数式与指数式的相互转化,并能运用指对互化关系研究一些问题. 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;理解推导这些运算性质的依据和过程;能较熟练地运用运算性质解决问题. 二、知识要点: 5 6 7 8 9 10 三、课前小练: 1.对应的指数式是( ). A. B. C. D. 2.下列指数式与对数式互化不正确的一组是( ). A. B. C. D. 3.设,则x的值等于( ). A. 10 B. 0.01 C. 100 D. 1000 4.设,则底数x的值等于( ). A. 2 B. C. 4 D. 5.化简的结果是( ). A. B. 1 C. 2 D. 四、典例精析: 例1、将下列指数式化为对数式,对数式化为指数式: (1); (2); (3); (4); (5); (6)ln100=4.606. 例2、求下列各式中x的值 (1); (2); (3) (4)(5); 例3、 用,,表示下列各式 (1)lg(xyz) (2)lg (3)lg 例4 、计算下列各式的值: (1); (2). 五、巩固练习: 1.若,则x= ; 若,则x= . 2.求下列各式中x的取值范围:(1); (2) 3.计算= . 4、若a>0,a≠1,且x>y>0,N∈N,则下列八个等式: ①(logax)n=nlogx;②(logax)n=loga(xn);③-logax=loga();④=loga(); ⑤=logax;⑥logax=loga;⑦an=xn;⑧loga=-loga. 其中成立的有________个. 5(选做).若3a=2,则log38-2log36= . 6(选做).已知,用a、b表示. 第七课时 对数函数及其性质和幂函数 一、目的要求: 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图像,探索并了解对数函数的单调性与特殊点. 掌握对数函数的性质,并能应用对数函数解决实际中的问题. 知道指数函数y=ax 与对数函数y=loga x互为反函数. (a > 0, a≠1);通过实例,了解幂函数的概念;结合函数y=x, y=x2, y=x3, y=1/x, y=x1/2 的图像,了解它们的变化情况. 二、知识要点: 1 3 4 5. 幂函数的基本形式是 ,其中 是自变量, 是常数. 要求掌握,,, ,这五个常用幂函数的图象. 6. 观察出幂函数的共性,总结如下:(1)当时,图象过定点 ;在上是 .(2)当时,图象过定点 ;在上是 ;在第一象限内,图象向上及向右都与坐标轴无限趋近. 7. 幂函数的图象,在第一象限内,直线的右侧,图象由下至上,指数由小到大. 轴和直线之间,图象由上至下,指数由小到大. 三、课前小练: 1.下列各式错误的是( ). A. B. C. D. . 2.如果幂函数的图象经过点,则的值等于( ). A. 16 B. 2 C. D. 3.下列函数中哪个与函数y=x是同一个函数( ) A. B. y= C. D. y= 4.函数的定义域是( ). A. B. C. D. 5.若,那么满足的条件是( ). A. B. C. D. 四、典例精析: 例1、比较大小:(1),,; (2),,. 例2、求下列函数的定义域: (1); (2). (3) 例3、已知幂函数的图象过点,试讨论其单调性. 五、巩固练习: 1.比较两个对数值的大小: ; . 2.求下列函数的定义域:(1) ; (2) 3.设,,c,则( ). A. c<b<a B. c<a<b C. a<b<c D. b<a<c 4.下列函数在区间上是增函数的是( ). A. B. C. D. 第8课时 函数与方程 一.目标与要求: 1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 二.知识要点 1.方程的根与函数的零点 (1)函数零点概念:对于函数,把使得_________成立的实数叫做函数的零点。 函数零点的意义:函数的零点就是方程 的________,亦即函数的图象与轴交点的______。即:方程有实数根函数的图象与轴有交点函数有零点。 二次函数的零点: 1)△>0,方程有两不等实根,二次函数的图象与轴有___个交点,二次函数有______个零点; 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程无实根,二次函数的图象与轴有____交点,二次函数有___零点。 零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有________,那么函数在区间内有零点。即存在,使得______,这个也就是方程的根。 2.二分法 二分法及步骤:对于在区间,上连续不断,且满足·_____的函数,通过不断地把函数的零点所在的区间______,使区间的两个端点_______零点,进而得到零点近似值的方法叫做二分法. 给定精度,用二分法求函数的零点近似值的步骤如下: (1)确定区间,,验证·,给定精度; (2)求区间,的中点; (3)计算:①若=,则就是函数的零点; ②若·<,则令=(此时零点); ③若·<,则令=(此时零点); (4)判断是否达到精度: 即若,则得到零点零点值(或);否则重复步骤2~4。 三、课前练习: 1.函数的零点为( ) A B 3 C -1或3 D 2或1 2.用二分法研究函数的零点时,第一次经计算可得其中一个零点,第二次应计算________. 3.函数在区间[-1,1]内存在一个零点,则的取值范围为__________. 4.若一次函数有一个零点2,则函数的图像可能是( ) A B C D 三.典型例题分析: 例题1.方程仅有一正实根,则( ) A(0,1) B(1,2) C(2,3) D(3,4) x 1.00 1.25 1.375 1.50 f(x) 1.0794 0.2000 -0.3661 -1.0000 例2.为求方程 的根的近似值,令,并用计算器得到下表: 则由表中的数据,可得方程的一个近似解(精确到0.1)为( ) A 1.2 B.1.3 C.1.4 D.1.5 例3.已知方程在区间[-3,0]和[0,4]内各有一解存在,试确定的取值范围? 五、巩固练习: 1、下列说法不正确的是( ) A 从“数”的角度看:函数零点即是使 成立的实数x的值; B 从“形”的角度看:函数零点即是函数的图象与轴交点的横坐标; C 方程无实根,二次函数的图象与轴无交点,二次函数无零点; D相邻两个零点之间的函数值保持异号 2、方程lgx+x=3的解所在区间为( ) A.(0,1) B.(1,2) C.(2,3) D.(3,+∞) 3、若函数在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A.若,不存在实数使得; B.若,存在且只存在一个实数使得; C.若,有可能存在实数使得; D.若,有可能不存在实数使得; 4、方程的实数解有_______个。 5、如果二次函数有两个不同的零点,则的取值范围是( ) A. B. C. D. 6、已知函数,则函数的零点是____________。 7、用“二分法”求方程在区间内的实根,取区间中点为,那么下一个有根的区间是 。 第9课:几类不同增长的函数模型 一、目标与要求: 理解几种常见函数模型,体会其增长差异; 增强数学的应用意识,学会将实际问题抽象成数学问题,能运用相关知识解决实际问题。 二.要点知识 1、数学建模就是把实际问题加以________,建立相应的__________的过程,是用数学知识解决实际问题的关键。实际应用问题建立函数关系式后一般都要考察________。 2、在区间上,函数,和都是___函数,但它们增长的速度不同,随着x的增大,的增长速度会_______,会超过并远远____的增长速度,而的增长速度则会______,图象就像渐渐与____平行一样。因此,总会存在一个,当时,就会有。 三、课前练习: 1. 函数与在上增速较慢的是___________,函数与在上增速较快的是___________。 2. 某同学去上学,当心迟到,就匀速跑步去学校,则速度v与时间t的函数关系为( ) A一次函数 B二次函数 C常数函数 D指数函数 3.某动物繁殖数量y(只)与时间x(年)的关系为则第四年动物有____只,呈_____增长。 4如图,纵轴表示行走距离d,横轴表示行走时间t,下列四图中,哪一种表示先快后慢的行走方法。( ) d d d d 0 t 0 t 0 t 0 t A B C D 四、典例分析: 例题1:某人从某基金会获得一笔短期(三个月内)的扶贫资金,拟打算投资。现有三种投资方案: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。 天数 回报 方案 1 2 3 4 5 6 7 8 9 10 11 一 40 80 120 160 200 @ @ 320 360 400 440 二 10 30 60 @ @ 210 280 360 450 @ @ 三 0.4 1.2 2.8 6 @ 25.2 50.8 102 204.4 @ 818.8 请根据题意将上表中标有@处的数据补充完整 请问:若投资5天,则选哪种方案?若投资7天,则选哪种方案?若投资11天,则选哪种方案? 时间t 50 100 250 种植成本Q 150 100 150 例题2:某地西红柿从2月1日开始上市,通过市场调查得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表: (1) 根据表中数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t的变化关系:,() (2) 利用所选取的函数,求西红柿种植成本最低时的上市天数和最低种植成本。 五:巩固练习 1、已知下表中的数据,则下面函数中,能表达y与x之间关系的是( ) x 1 2 3 … y 1 3 8 … A B C D 2、某工厂10年来某种产品总产量C与时间t(年)的函数关系如下图所示,下列四种说法,其中说法正确的是:①前五年中产量增长的速度越来越快 ②前五年中产量增长的速度越来越慢 ③第五年后,这种产品停止生产 ④第五年后,这种产品的产量保持不变( ) A.②③ B.②④ C.①③ D.①④ 十课:函数模型应用实例 一、目标与要求: 能根据实际问题建立适当的数学模型,体会数学建模的基本思想; 培养作图读图能力,能根据数据画散点图选择适当的函数模型,解决实际问题。 二、课前练习: 1.一工厂生产某种产品的月产量y(单位:万件)与月份x构成的实数对在直线附近,则估计3月份生产该产品_____万件。 2、甲、乙两人在一次赛跑中,路程S与时间t的函数关系如图所示,则下列说法正确的是( ) A.甲比乙先出发 B.乙比甲跑的路程长 C.甲、乙两人的速度相同 D.甲先到达终点 Y 93 63 33 0 30 40 x 50 3、某航空公司规定,每位乘客乘机所携带行李的重量x(kg)与运 费y(元)由右图的一次函数图像确定,那么乘客可免费携带行 李的最大重量为_______kg 三:典例分析: 例题1:国外某地发生8.0级特大地震,在随后的几天里,地震专家对该地区发生的余震进行监测,记录部分数据如下表(地震强度是指地震释放的能量) 强度(J) 震级(里氏) 5.0 5.2 5.3 5.4 5.45 (1)在下列坐标平面内画出震级(y)随地震强度(x)变化的散点图; y/震级 强度(单位:J) (2)根据散点图,从函数、、中选取一个函数描述震级y随地震强度x变化关系; (3)该地发生8.0级特大地震,释放能量是多少?(参考数据:,) 四:课后练习: 1、细跑分裂试验中,细胞的个数y与时间t(分钟)的数据如下表: t 1 1.9 3.1 4 4.9 y 2 4 8 16 32 则,最接近实验数据的表达式是( ) A B C D y o y x o y 2、某城市地区的绿化面积平均每年 上一年增长10.4%,经过x年,绿化面积与原有的绿化面积之比为y,则函数y=f(x)的图象大致形状为 ( ) y x o 1 1 x o x A B C D 3、某厂原来月产量为a,一月份增产10%,二月份比一月份减产10%,设二月份产量为b,则( ) A.a=b B.a>b C.a<b D.a、b的大小无法确定 4、“红豆生南国,春来发几枝.”红豆又名相思豆,右图给出了红豆生长时间(月)与枝数(枝)的散点图:那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好? ( ) A;B; C;D t 5、某债券市场发行三种债券,A种面值为100元,一年到期本息和为103元;B种面值为50元,半年到期本息和为52.5元;C种面值为100元,但买入价为95元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,从小到大排列为( ) A.B,A,C B.A,C,B C.A,B,C D.C,A,B 第11课 空间几何体的结构、三视图和直观图 一、目标与要求:识记柱、锥、台、球及其简单组合体的结构特征,识记用平行投影与中心投影画空间图形的三视图与直观图,理解简单空间图形的三视图的画法及三视图的识别并能简单应用。 二、要点知识:1、棱(圆)柱、棱(圆)锥、棱(圆)台的结构特征: (1)___________________________________,_______________________________________, _______________________________________,由这些面所围成的多面体叫做棱柱。 (2)___________________________________,____________________________由这些面所围成的多面体叫做棱锥。 (3)______________________________________________________这样的多面体叫做棱台。 (4)______________________________________________________叫做圆柱,旋转轴叫做_______,垂直与轴的边旋转而成的圆面叫做_______,平行与轴的边旋转而成的曲面叫做______,无论旋转到什么位置,不垂直于轴的边都叫做___________ (5) _____________________________________________________所围成的旋转体叫做圆锥。 (6) _____________________________________________________叫做圆台。 (7) _____________________________________________________叫做球体,简称球。 2、中心投影、平行投影及空间几何体的三视图、直观图 (1)光由一点向外散射形成的投影,叫做______________ (2)在一束平行光线照射下形成的投影,叫做__________,投影线正对着投影面时,叫做正投影,否则叫斜投影。 3、正视图:光线从物体的_______投影所得的投影图,它能反映物体的_______和长度。 侧视图:光线从物体的________投影所得的投影图,它能反映物体的高度和宽度。 俯视图:光线从物体的________投影所得的投影图,它能反映物体的长度和宽度。 三、课前小练: 1、有一个几何体的三视图如下图所示, 这个几何体应是一个( ) A、棱台 B、棱锥 C、棱柱 D、都不对 2、下列结论中 (1).有两个面互相平行,其余各面都是平面四边形的几何体叫棱柱 ; (2).有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱; (3).用一个平面去截棱锥,棱锥的底面和截面之间的部分叫棱台; (4).以直角三角形的一条直角边所在直线为旋转轴将直角三角形旋转一周而形成的曲面所围成的几何体叫圆锥。其中正确的结论是( ) A.3 B.2 C.1 D.0 3、将图1所示的三角形绕直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形( ) X′ O′ C′ B′ A′ Y′ D′ 4、下面多面体是五面体的是( ) A 三棱锥 B 三棱柱 C 四棱柱 D 五棱锥 5、如图,水平放置的三角形的直观图,D′是A′B′边上 的一点,且,轴,轴, 那么、、三条线段对应原 图形中的线段CA、CB、CD中( ) A. 最长的是CA,最短的是CB B.最长的是CB,最短的是CA C.最长的是CB,最短的是CD D.最长的是CA,最短的是CD 四、典例分析: 例1、如图所示的空间几何体中,是柱体或由柱体组合而成的是( ) (1) (2) (3) (4) (5) A.(1)(2)(3)(4) B. (2)(4)(5) C. (1)(2) D.(1)(2)(5) 例2、用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面半径之比是1:4,截得的小圆锥母线长是3cm,求圆台的母线长。 正视图 侧视图 俯视图 2 例3、若一个正三棱柱的三视图如下,则这个三棱柱 的高和底面的边长分别为( ) A. B. C. 4,2 D.2,4 五、巩固练习: 1.棱柱的侧面都是( ) (A)正方形 (B)平展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高中数学学业水平考试复习知识点及基础题型练习.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2724021.html