【市级联考】河北省唐山市2018-2019学年高一年级第一学期期末考试数学试题(试卷类型:A).doc
《【市级联考】河北省唐山市2018-2019学年高一年级第一学期期末考试数学试题(试卷类型:A).doc》由会员分享,可在线阅读,更多相关《【市级联考】河北省唐山市2018-2019学年高一年级第一学期期末考试数学试题(试卷类型:A).doc(18页珍藏版)》请在咨信网上搜索。
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________ …………○…………外…………○…………装…………○…………订…………○…………线…………○………… 绝密★启用前 【市级联考】河北省唐山市2018-2019学年高一年级 第一学期期末考试数学试题(试卷类型:A) 试卷副标题 考试范围:xxx;考试时间:100分钟;命题人:xxx 题号 一 二 三 总分 得分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 评卷人 得分 一、单选题 1.已知集合M=(x,y)|x+y=3,N=(x,y)|x-y=3,则 M ∩N=( ) A.{0,3} B.{3,0} C.{(0,3)} D.{(3,0)} 2.已知cosα=35,α是第四象限角,则tanα的值是( ) A.34 B.-34 C.43 D.-43 3.若幂函数y=f(x)的图象经过点(2,2),则f(3)=( ) A.13 B.3 C.3 D.9 4.下列函数中,既存在零点又是偶函数的是( ) A.y=lnx B.y=cosx+2 C.y=sin(2x+π2) D.y=x2+1 5.已知向量a=(1,1),b=(2,-t),若a∥b,则实数t=( ) A.12 B.-12 C.2 D.-2 6.已知a=log0.22.1,b=0.22.1,c=2.10.2,则( ) A.c<b<a B.c<a<b C.a<b<c D.a<c<b 7.函数f(x)=3x+2x的零点所在的一个区间是( ) A.(1,2) B.(0,1) C.(-1,0) D.(-2,-1) 8.已知sin(α-π6)=13,则cos(α+π3)=( ) A.13 B.-13 C.223 D.-223 9.在同一直角坐标系中,函数f(x)=xa(x≥0),g(x)=logax a>0,且a≠1的图象可能是( ). A. B. C. D. 10.已知函数 f (x)=Asin(ωx+φ)(A>0, ω>0,0<φ≤π2)的图象如下,则点P(ω,φ)的坐标是( ) A.(13,π6) B.(13,π3) C.(π3,π6) D.(π3,π3) 11.已知函数 f (x)=32cos2x+12sin2x的图象向左平移π6个单位后,得到函数 y=g(x)的图象,下列关于函数y=g(x)的说法正确的是( ) A.图象关于点(-π3,0)对称 B.图象关于直线x=-π6对称 C.在区间[-π6,0]单调递增 D.最小正周期为2π 12.定义在R上的偶函数f (x)满足f (x+2)=f (x),当x∈[3,4]时, f (x)=x-3, 则( ) A.f(sin1)<f(cos1) B.f(sin32)>f(cos32) C.f(sinπ3)>f(cosπ3) D.f(sin13)<f(cos13) 第II卷(非选择题) 请点击修改第II卷的文字说明 评卷人 得分 二、填空题 13.已知向量a,b满足|a|=3,|b|=4,若a ⊥b, 则|a+b|=_____________. 14.已知tanα=2,则sinαcosα=__________. 15.函数 f (x)=-x2+2x+1,x≤1loga(x+3),x>1 (a>0且a≠1)值域为R,则实数a的取值范围是____________. 16.函数f (x)=(12)|x-2|+2cosπx2(-6≤x≤10)的所有零点之和为____________. 评卷人 得分 三、解答题 17.已知角α的终边经过点P(12,-32). (1)求sinα的值; (2)求cosαsin(π-α)⋅tan(α+π)cos(3π-α)的值. 18.已知函数f (x)=2(sinx+cosx)cosx-1 (1)求函数f (x)的最小正周期; (2)当x∈[π12,π2]时,求函数f (x)的值域. 19.如图,平行四边形ABCD中,AD=1,AB=2,∠DAB=60o,点M在AB上,点N在DC上,且AM=13AB,DN=12DC. (1)用AB和AD表示AN; (2)求AN⋅DM 20.已知函数 f (x)=ex-1,g(x)=3e|x|+1. (1)求函数g (x)的值域; (2)求满足方程f (x)-g(x)=0的x的值. 21.已知奇函数f(x)=lnax+1x-1 . (1)求实数a的值; (2)判断函数 f (x)在(1,+∞)上的单调性,并利用函数单调性的定义证明; (3)当xä[2,5],时,ln(1+x)>m+ln(x-1) 恒成立,求实数m的取值范围. 22.如图,已知单位圆O,A(1,0),B(0,1),点D在圆上,且∠AOD=π4,点C从点A沿圆弧AB运动到点B,作BE⊥OC于点E,设∠COA=θ. (1)当θ=5π12时,求线段DC的长; (2)ΔOEB的面积与ΔOCD面积之和为S,求S的最大值. 试卷第3页,总4页 参考答案 1.D 【解析】 【分析】 解方程组x+y=3x-y=3即可求出M∩N的元素,从而得出M∩N. 【详解】 解x+y=3x-y=3得,x=3y=0; ∴M∩N={(3,0)}. 故选:D. 【点睛】 本题考查描述法表示集合的方法,以及交集的定义及运算. 2.D 【解析】 【分析】 利用同角三角函数间的基本关系求出sinα的值,即可确定出tanα的值. 【详解】 ∵cosα=35,α为第四象限角, ∴sinα=-1-cos2α=-45, 则tanα=-43. 故选:D. 【点睛】 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键. 3.B 【解析】 【分析】 利用待定系数法求出幂函数y=f(x)的解析式,再计算f(3)的值. 【详解】 设幂函数y=f(x)=xα, 其图象经过点(2,2), ∴2α=2, 解得α=12, ∴f(x)=x12=x, ∴f(3)=3. 故选:B. 【点睛】 本题考查了幂函数的定义与应用问题,是基础题. 4.C 【解析】 【分析】 根据题意,依次分析选项,综合即可得答案. 【详解】 根据题意,依次分析选项: 对于A,y=lnx,是对数函数,不是偶函数,不符合题意; 对于B,y=cosx+2,是偶函数,但y=cosx+2>0恒成立,不存在零点,不符合题意; 对于C,y=sin(2x+π2)=cos2x,是偶函数且存在零点,符合题意; 对于D,y=x2+1,是偶函数,但y=x2+1>0恒成立,不存在零点,不符合题意; 故选:C. 【点睛】 本题考查函数的零点以及函数的奇偶性,关键是掌握常见函数的奇偶性以及图象性质,属于基础题. 5.D 【解析】 【分析】 根据a→∥b→即可得出1•(﹣t)﹣1•2=0,解出t即可. 【详解】 ∵a→∥b→; ∴﹣t﹣2=0; ∴t=﹣2. 故选:D. 【点睛】 涉及平面向量的共线(平行)的判定问题主要有以下两种思路: (1)若a≠0且a//b,则存在实数λ,使b=λa成立; (2)若a=(x1,y1),b=(x2,y2),且a//b,则x1y2-x2y1=0. 6.C 【解析】 【分析】 利用有理指数幂与对数的运算性质分别比较a,b,c与0和1的大小得答案. 【详解】 ∵a=log0.22.1<log0.21=0, 0<b=0.22.1<0.20=1 c=2.10.2>2.10=1. ∴a<b<c. 故选:C. 【点睛】 利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小. 7.C 【解析】 【分析】 依次代入区间的端点值,求其函数值,由零点判定定理判断. 【详解】 ∵f(﹣2)=3﹣2+2×(﹣2)=19-4<0, f(﹣1)=3﹣1+2×(﹣1)=13-2<0, f(0)=1>0,f(1)=3+2>0,f(2)=9+4>0, ∴f(﹣1)f(0)<0, 故选:C. 【点睛】 本题考查了函数零点的判断,考查零点存在性定理,属于基础题. 8.B 【解析】 【分析】 由已知直接利用三角函数的诱导公式化简求值. 【详解】 ∵sin(α-π6)=13, ∴cos(α+π3)=cos(-α-π3) =cos[-π2-(α-π6)]=﹣sin(α-π6)=-13. 故选:B. 【点睛】 本题考查三角函数的化简求值,考查诱导公式的应用,是基础题. 9.D 【解析】 【分析】 结合对数函数和幂函数的图象和性质,对选项中的图象逐个分析, 【详解】 对于A项,对数函数过(1,0)点,但是幂函数不过(0,1)点,所以A项不满足要求; 对于B项,幂函数a>1,对数函数0<a<1,所以B项不满足要求; 对于C项,幂函数要求0<a<1,而对数函数要求,a>1,所以C项不满足要求; 对于D项,幂函数与对数函数都要求0<a<1,所以D项满足要求; 故选D. 【点睛】 该题考查的是有关函数图象的选择问题,在解题的过程中,需要对相应的函数的图象的走向了如指掌,注意参数的范围决定着函数图象的走向,再者就是在同一坐标系中两个函数的图象对应参数的范围必须保持一致. 10.C 【解析】 【分析】 由函数f(x)的部分图象求得A、T、ω和φ的值即可. 【详解】 由函数f(x)=Asin(ωx+φ)的部分图象知, A=2,T=2×(4﹣1)=6, ∴ω=2πT=π3, 又x=1时,y=2, ∴π3+φ=π2+2kπ,k∈Z; ∴φ=π6+2kπ,k∈Z; 又0<φ≤π2,∴φ=π6, ∴点P(π3,π6). 故选:C. 【点睛】 已知函数y=Asin(ωx+φ)+B(A>0,ω>0)的图象求解析式 (1)A=ymax-ymin2,B=ymax+ymin2. (2)由函数的周期T求ω,T=2πω. (3)利用“五点法”中相对应的特殊点求φ. 11.A 【解析】 【分析】 辅助角公式得:f(x)=32cos2x+12sin2x=sin(2x+π3),三角函数的对称性、单调性及周期性逐一判断即可. 【详解】 由f(x)=32cos2x+12sin2x=sin(2x+π3), 将函数f(x)=sin(2x+π3)的图象向左平移π6个单位后,得到函数y=g(x)的图象, 则g(x)=sin[2(x+π6)+π3]=sin(2x+2π3), ①令2x+2π3=kπ,解得:x=kπ2-π3(k∈z) 当k=0时,函数图象对称点为:(-π3,0),故选项A正确; ②令2x+2π3=kπ+π2,解得:x=kπ2-π12(k∈z), 解方程-π6=kπ2-π12(k∈z),k无解,故选项B错误 ③令2kπ-π2≤2x+2π3≤2kπ+π2, 解得:kπ-7π12≤x≤kπ-π12(k∈z) 即函数增区间为:[kπ-7π12,kπ-π12](k∈z), 则函数在区间[-π6,0]单调递减,故选项C错误, ④由T=2π2=π,即函数的周期为:π,故选项D错误, 综合①②③④得:选项A正确; 故选:A. 【点睛】 函数y=Asinωx+φ+B(A>0,ω>0)的性质 (1) ymax=A+B,ymin=A-B. (2)周期T=2πω. (3)由 ωx+φ=π2+kπk∈Z求对称轴 (4)由-π2+2kπ≤ωx+φ≤π2+2kπk∈Z求增区间; 由π2+2kπ≤ωx+φ≤3π2+2kπk∈Z求减区间. 12.A 【解析】 【分析】 根据条件可知,f(x)的周期为2,可设x∈[0,1],从而得出4﹣x∈[3,4],这样即可得出f(x)=f(4﹣x)=1﹣x,得出f(x)在[0,1]上单调递减,从而可判断每个选项的正误. 【详解】 ∵f(x+2)=f(x); ∴f(x)的周期为2,且f(x)是偶函数,x∈[3,4]时,f(x)=x﹣3; 设x∈[0,1],则4﹣x∈[3,4]; ∴f(x)=f(x﹣4)=f(4﹣x)=4﹣x﹣3=1﹣x; ∴f(x)在[0,1]上单调递减; ∵sin1,cos1∈[0,1],且sin1>cos1; ∴f(sin1)<f(cos1). 故选:A. 【点睛】 本题考查了函数值大小的比较,涉及到函数的奇偶性,周期性,单调性等知识. 13.5 【解析】 【分析】 根据a→⊥b→即可得到a→⋅b→=0,再由|a→|=3,|b→|=4即可求出(a→+b→)2=25,从而可得出|a→+b→|的值. 【详解】 ∵a→⊥b→; ∴a→⋅b→=0,且|a→|=3,|b→|=4; ∴(a→+b→)2=a→2+2a→⋅b→+b→2=9+0+16=25; ∴|a→+b→|=5. 故答案为:5. 【点睛】 本题考查向量垂直的充要条件,向量的数量积运算,向量长度的概念. 14.25 【解析】 分析:先对sinαcosα弦化切,再代入tanα=2求结果. 详解:因为sinαcosα=sinαcosαsin2α+cos2α=tanαtan2α+1,所以sinαcosα=222+1=25. 点睛:应用三角公式解决问题的三个变换角度 (1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 15.a≥2 【解析】 【分析】 由题意讨论x≤1时,函数y是单调减函数,且y≤2;x>1时,函数y应为单调增函数,且y>2;由此求得a的取值范围. 【详解】 由题意知,当x≤1时,函数y=﹣x2+2x+1是单调减函数,且y≤2; 当x>1时,函数y=loga(x+3)应为单调增函数,且y>2; ∴a>1loga(1+3)≥2, 解得a≥2; ∴实数a的取值范围是a≥2. 故答案为:a≥2. 【点睛】 本题考查了分段函数的图象与性质的应用问题,是基础题. 16.16 【解析】 【分析】 构造函数g(x)=(12)|x﹣2|,h(x)=﹣2cosπx2,由于﹣6≤x≤10时,函数g(x),h(x)的图象都关于直线x=2对称,可得函数f(x)在﹣6≤x≤10的图象关于直线x=2对称.运用﹣6≤x≤10时,函数g(x),h(x)的图象的交点共有8个,即可得到f(x)的所有零点之和. 【详解】 构造函数g(x)=(12)|x﹣2|, h(x)=﹣2cosπx2, ∵﹣6≤x≤10时, 函数g(x),h(x)的图象 都关于直线x=2对称, ∴函数f(x)=(12)|x﹣2|+2cosπx2 (﹣6≤x≤10) 的图象关于直线x=2对称. ∵﹣6≤x≤10时,函数g(x),h(x)的图象的交点共有8个, ∴函数f(x)的所有零点之和等于4×4=16. 故答案为:16. 【点睛】 本题考查函数的零点,解题的关键是构造函数,确定函数图象的对称性及图象的交点的个数. 17.(1)-32 (2)-2 【解析】 【分析】 (1)根据任意角的三角函数的定义即可求出; (2)根据诱导公式和同角的三角函数的关系即可求出. 【详解】 解:(1)因为角α的终边经过点P(,-),r=(12)2+(32)2=1 由正弦函数的定义得sinα=-. (2)原式=· =-=-, 由余弦函数的定义得cosα=, 故所求式子的值为-2. 【点睛】 本题考查了任意角的三角函数的定义和同角的三角函数的关系,属于基础题. 18.(1)π; (2)-1,2 【解析】 【分析】 (1)求出f(x)=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+π4),由此能求出函数f(x)的最小正周期; (2)当x∈[π12,π2]时,2x+π4∈[5π12,5π4],由此能求出函数f(x)的值域. 【详解】 解: (1)f(x)=sin2x+2cos2x-1 =sin2x+cos2x =sin(2x+) 函数f(x)的最小正周期为T=π. (2)当x∈[,]时,2x+∈[,],. 当2x+=,即x=时,f(x)取得最小值-1, 当2x+=,即x=时,f(x)取得最大值, 所以函数f(x)的值域为[-1,]. 【点睛】 本题考查函数的最小正周期的求法,考查三角函数的性质等基础知识,考查化归与转化思想,考查推理论论能力、运算求解能力,是中档题. 19.(1)AN=13AB-AD (2)-12 【解析】 【分析】 (1)运用向量的加法可解决此问题;(2)运用数量积的性质和运算可解决此问题. 【详解】 解: (1)在平行四边形ABCD中,DN=DC 所以=+=+=+, (2)因为AM=AB 所以=-=-; 又因为AD=1,AB=2,∠DAB=60°,·=12 所以·=(+)·(-) =||2-||2-· =-1-×2×1× =- 【点睛】 本题考查平面向量的加法运算,平面向量的数量积的性质和运算. 20.(1) (1,4] ;(2) x=ln3 【解析】 【分析】 (1)由指数函数的值域求解函数g(x)的值域; (2)由f(x)﹣g(x)=0,得ex-3e|x|-2=0,对x分类求解得答案. 【详解】 解: (1)g(x)=+1=3()|x|+1, 因为|x|≥0,ex≥1 所以0<()|x|≤1, 0<3()|x|≤3, 即1<g(x)≤4, 故g(x)的值域是(1,4]. (2)由f(x)-g(x)=0,得ex--2=0, 当x≤0时,方程无解; 当x>0时,ex--2=0, 整理得(ex)2-2ex-3=0,(ex+1)(ex-3)=0, 因为ex>0,所以ex=3,即x=ln3. 【点睛】 本题考查函数值域的求法,考查函数的零点与方程的根的关系,是中档题. 21.(1) a=1; (2) f(x)在(1,+∞)上为减函数;(3)m<ln32 【解析】 【分析】 (1)利用函数的奇偶性的定义,推出结果即可; (2)利用函数的单调性的定义证明即可; (3)推出m的表达式,利用函数的单调性求解函数的最值,推出结果即可. 【详解】 解: (1)∵f(x)是奇函数,∴f(-x)=-f(x), 即ln=-ln. ∴=,即(a2-1)x2=0,得a=±1, 经检验a=-1时不符合题意,∴a=1. (2)f(x)=ln,f(x)在(1,+∞)上为减函数. 下面证明:任取x1,x2∈(1,+∞),且x1<x2, f(x1)-f(x2)=ln-ln=ln(·)=ln ∵x1<x2,∴x2-x1>0,>1, ∴f(x1)-f(x2)>0,f(x1)>f(x2), ∴f(x)为(1,+∞)上的减函数. (3)由已知得m<ln(1+x)-ln(x-1),即m<ln. 由(2)知f(x)=ln在[2,5]上为减函数. 则当x=5时,(ln)min=ln32, 于是m<ln32.. 【点睛】 本题考查函数恒成立函数的奇偶性以及函数的单调性的应用,考查转化思想以及计算能力. 22.(1)3 (2)34 【解析】 【分析】 (1)根据题意,分析可得当θ=5π12时,∠COD=5π12+π4=2π3,由余弦定理分析可答案; (2)根据题意,由∠COA=θ,利用θ表示△OEB的面积与△OCD面积,进而可得S=12sinθcosθ+24(sinθ+cosθ),令t=sinθ+cosθ,运用换元法分析可得答案. 【详解】 解: (1)θ=,∠COD=+=, ∠ODC=,DC=. (2)∠COA=θ,∠OBE=θ,OE=sinθ,BE=cosθ,S△OEB=sinθcosθ, 方法一:因为∠AOD=,∠COA=θ. 所以∠COD=θ+,OC=OD=1,取CD中点H, 则OH⊥CD,∠DOH=,DH=sin,OH=cos, 所以S△OCD=cossin=sin(θ+)=(sinθ+cosθ). 方法二:作CM⊥OD,CM=sin(θ+π4) ∴SΔocD=12sin(θ+π4)=24(sinθ+cosθ) △OEB的面积与△OCD面积之和S=sinθcosθ+(sinθ+cosθ), 令t=sinθ+cosθ,θ∈[0,],则t∈[1,]且sinθcosθ=. 所以S=+t=(t2+t-1)=(t+)2-, 因为t∈[1,], 当t=时,S取得最大值,最大值为. 【点睛】 本题考查三角函数的建模问题,涉及三角函数的最值和余弦定理的应用,注意用θ表示)△OEB的面积与△OCD面积之和. 答案第13页,总14页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 市级联考 完整 word 级联 河北省 唐山市 2018 2019 学年 一年级 一学期 期末考试 数学试题 试卷 类型
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文
本文标题:【市级联考】河北省唐山市2018-2019学年高一年级第一学期期末考试数学试题(试卷类型:A).doc
链接地址:https://www.zixin.com.cn/doc/2703227.html
链接地址:https://www.zixin.com.cn/doc/2703227.html