第二章习题参考答案(5版).doc
《第二章习题参考答案(5版).doc》由会员分享,可在线阅读,更多相关《第二章习题参考答案(5版).doc(13页珍藏版)》请在咨信网上搜索。
第二章 运算方法和运算器 习题参考答案 1. 写出下列各数的原码、反码、补码、移码表示(用8位二进制数)。其中MSB是最高位(又是符号位)LSB是最低位。如果是小数,小数点在MSB之后;如果是整数,小数点在LSB之后。 (1) -35 (2) 128 (3) -127 ( 4) -1 解: (1)先把十进制数-35/64写成二进制小数:(注意位数为8位) x=(-35)10=(-100011)2 [x]原=10100011 [x]反=11011100 [x]补=11011101 (2) 128写成二进制小数: x=(128)10=(10000000)2 [x]原=10000000 [x]反=10000000 [x]补=10000000 (3) 先把十进制数-127写成二进制小数: x=(-127)10=(-1111111)2 [x]原=11111111 [x]反=10000000 [x]补=10000001 (4) 令Y=-1=-0000001B [Y]原=10000001 [Y]反=11111110 [Y]补=11111111 2. 设[X]补= a7,a6,a5…a0 , 其中ai取0或1,若要x>-0.5,求a0,a1,a2,…,a6 的取值。 解:若a7= 0,则:x>0, 所以: a1= 0, a2,…,a6任意; 若a7= 1,则:a1= 1, a2,…,a6 不全为0。 3. 有一个字长为32位的浮点数,符号位1位,阶码8位,用移码表示;尾数23位(包括1位尾符)用补码表示,基数R=2。请写出: (1) 最大数的二进制表示; (2) 最小数的二进制表示; (3) 规格化数所能表示的数的范围; 解: (1) 111111111 0 111111111111111111111 (2)111111111 1000000000000000000000 (3)111111111 0111111111111111111111 ~011111111 1000000000000000000000 (4)000000000 00000000000000000000001 ~000000000 11111111111111111111111 4. 将下列十进制数表示成浮点规格化数,阶码3位,用补码表示;尾数9位,用补码表示。 (1) 27/64 (2) -27/64 解:(1)x=27/64=11011B×2-6=0.011011B=1.1011B×2-2 S=0 M=0.10110000000000000000000 E=e+127=-2+127=125=01111101 [x]浮= 0011 1110 1 101 1000 0000 0000 0000 0000 =(3ED80000)16 (2) x=-27/64= -11011B×2-6= -0.011011B= -1.1011B×2-2 S=1 M=0.10110000000000000000000 E=e+127=-2+127=125=01111101 [x]浮= 1011 1110 1 101 1000 0000 0000 0000 0000 =(BED80000)16 浮点规格化数 : [x]浮= 1111 1001010000 5. 已知X和Y, 用变形补码计算X+Y, 同时指出运算结果是否溢出。 (1)X=11011 Y=00011 解: 先写出x和y的变形补码再计算它们的和 [x]补=00 11011 [y]补=00 00011 [x+y]补=[x]补+[y]补=00 11011+00 00011=00 11110 无溢出。 (2)X= 11011 Y= -10101 解: 先写出x和y的变形补码再计算它们的和 [x]补=00 11011 [y]补=11 01011 [x+y]补=[x]补+[y]补=00 11011+11 01011=00 00110 ∴ x+y=00 00110B 无溢出。 (3)X= -10110 Y= -00001 解: 先写出x和y的变形补码再计算它们的和 [x]补=11 01010 [y]补=11 11111 [x+y]补=[x]补+[y]补=11.01010+11.11111=11 01001 ∴ x+y= - 10111 无溢出 6. 已知X和Y, 用变形补码计算X-Y, 同时指出运算结果是否溢出。 (1) X=11011 Y= -11111 解:先写出x和y的变形补码,再计算它们的差 [x]补=00 11011 [y]补=11 00001 [-y]补=00 11111 [x-y]补=[x]补+[-y]补=00 11011+00 11111=01 11010 ∵运算结果双符号不相等 ∴ 为正溢出 (2) X=10111 Y=11011 解:先写出x和y的变形补码,再计算它们的差 [x]补=00 10111 [y]补=00 11011 [-y]补=11 00101 [x-y]补=00 10111+11 00101=11 11100 ∴ x-y= -1 无溢出 (3) X=0.11011 Y=-10011 解:先写出x和y的变形补码,再计算它们的差 [x]补=00 11011 [y]补=11 01101 [-y]补=00 10011 [x-y]补=[x]补+[-y]补=00 11011+00 10011=01 01110 ∵运算结果双符号为01不相等 ∴ 为正溢出 7. 用原码阵列乘法器、补码阵列乘法器分别计算X×Y。 (1)X= 11011 Y= -11111 (2)X=-11111 Y=-11011 解:(1)用原码阵列乘法器计算 x,y都取绝对值,符号单独处理 [X]原=0.11011 [Y]原=1.11111 积的符号为 1 1 0 1 1 × 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0.1 1 0 1 0 0 0 1 0 1 [X×Y]原 =1.1101000101 X×Y = - 0.1101000101 (2)X=-11111 Y=-11011 解:用原码阵列乘法器计算 [X]原=1 11111 [Y]原=1 11011 积的符号为 1 1 1 1 1 × 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0. 1 1 0 1 0 0 0 1 0 1 [X ×Y]原 = 0.1101000101 X×Y = 0.1101000101 8. 用原码阵列除法器计算 X÷Y。 (1)X=0.11000 Y= -0.11111 (2)X=-0.01011 Y= 0.11001 解:(1)[x]原=[x]补=0.11000 [|y|]补=0.11111 [-∣y∣]补=1.00001 被除数X 0.1100000000 [-|y|]补 1.00001 余数为负 1.110010 →q0=0 +[|y|]补 0.011111 余数为正 0.0100010 →q1=1 [-|y|]补 1.1100001 余数为正 0.00000110 →q2=1 [-|y|]补 1.11100001 余数为负 1.111001110 →q3=0 +[|y|] 0. 000011111 余数为负 1. 1111011010 →q4=0 +[|y|] 0. 0000011111 1. 1111111001 →q5=0 商 |q|=q0.q1q2q3q4q5=0.11000 余数r=0.00000110=0.11×2-101 [x/y]原=1.11000 (2)X=-0.01011 Y= 0.11001 解:(1)[|x|]原=[|x|]补=0.01011 [|y|]补=0.11001 [-|y|]补=1.00111 被除数X 0.0101100000 [-|y|]补 1.00111 余数为负 1.100100 →q0=0 +[|y|]补 0.011001 余数为负 1.1111010 →q1=0 [|y|]补 0.0011001 余数为正 0.00100110 →q2=1 [-|y|]补 1.11100111 余数为正 0.000011010 →q3=1 +[-|y|] 1.111100111 余数为负 0. 0000000010 →q4=1 +[|y|] 1. 1111100111 1. 1111101001 →q5=0 |q|=q0.q1q2q3q4q5=0.01110 r=0.000000001=0.1×21000 [x/y]原=1.01110 9. 设阶为3位((不包括阶符位), 尾数为6位(不包括数符位), 阶码、尾数均用补码表示, 完成下列取值的[X+Y],[X-Y]运算: (1)x=2-011×0.100101 y=2-010×(-0.011110) 解: ① 对阶:因x阶码小,所以调整x指数向y看齐 x=2-010×0.0100101 ② 尾数相加减 x+y=2-010×(0.0100101-0.011110) =2-010× (-0.0010111) x-y=2-010×0.1100001 ③ 规格化处理 x+y=2-010× (-0.0010111)=2-101× (-1.011100) x-y=2-010×0.1100001=2-011×1.100001 ④ 溢出检查 -126≤x+y的指数=-5,x-y的指数=-3≤127 没有溢出 (2) x=2-101×(-0.010110) y=2-100×(0.010110) 解: ① 对阶:因x阶码小,所以调整x指数向y看齐 x=2-100×(-0.0010110) ② 尾数相加减 x+y=2-100×(-0.0010110+0.010110) =2-100× (0.001011) x-y=2-100×(-0.100001) ③ 规格化处理 X+y=2-111× (1.011000) X-y=2-101×(-1.000010) ④ 溢出检查 -126≤x+y的指数=-7,x-y的指数=-5≤127 没有溢出 10. 设数的阶码为3位,尾数为6位,用浮点运算方法,计算下列各式 (1) 解: x=2010×1.10100, y=2011×(-1.00100) ①阶码求和 ex+ey =010+011=101 (+5) 移码表示为Ex+Ey=127+5=132 ②尾数相乘,可以采用原码阵列乘法实现(用绝对值) Mx ×My=1.10100 ×1.00100 =1.1101010000 ③规格化处理与溢出检查 Mx ×My= -1.1101010000(已是规格化数) -126≤指数5≤127,故没溢出 ④舍入处理(保留6位小数) Mx ×My =1.110101 ⑤确定积的符号,异号相乘为负 [x×y]浮=2101×(-1.110101) (2) 解: x=2-100×1.101000, y=2010×(1.111000) Mx = 1.101000 My= 1.111000 ①阶码求差 ex-ey =-100-010 = -110 (-6) 移码Ex-Ey=127+(-6)=121 ②尾数相除,可以采用无符号阵列除法实现 Mx/My=1.101000 1.111000 =0. 110111 ③规格化处理及溢出判断---尾数左移1位,阶码减1 ex-ey = -111 (-7) -126≤指数-7≤127,故没溢出 [Mx/My]= 1.101110 ④舍入处理(保留6位小数) Mx ×My = 1.101110 ⑤确定商的符号,同号相除为正 [xy]浮=2-111×1.101110 11. 某加法器进位链小组信号为C4C3C2C1 ,低位来的信号为C0 ,请分别按下述两种方式写出C4C3C2C1的逻辑表达式。 (1) 串行进位方式 (2) 并行进位方式 解 :根据一位全加器 FA 对于串行方式有 其中 其中 其中 其中 对于并行进位方式: C1 = G1 + P1 C0 C2 = G2 + P2 G1 + P2 P1 C0 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 C0 C4 = G4 + P4 G3 + P4 P3 G2 + P4 P3 P2 G1 + P4 P3 P2 P1 C0 13- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 习题 参考答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文