镁基储氢材料发展进展.doc
《镁基储氢材料发展进展.doc》由会员分享,可在线阅读,更多相关《镁基储氢材料发展进展.doc(6页珍藏版)》请在咨信网上搜索。
1、Mg基储氢材料的进展一、课题国内外现状氢能作为一种资源丰富,能量高,干净无污染的二次能源已经引起了人们的极大兴趣1,随着“氢经济”(以氢为能源而驱动的政治和经济)时代即将来临,氢能成为新世纪的重要二次能源已为科学界所广泛认同。氢能的发展涉及到很多方面,如氢能技术、工程、生产、运输、储存、经济及利用等,其中储存问题是制约整个氢能系统应用的关键步骤,在已经探明的储存方法中,金属氢化物储氢具有储氢体积密度大、安全性好的优势,比较容易操作,运行成本较低,因此,金属氢化物技术的开发与研究近年来在世界各国掀起极大的热潮。其中,由于Mg密度小(1.74 g/cm3)、储氢能力高(理论上可达到7.6 wt.)
2、、价格低、储量丰富而使之成为一种很有前途的储氢合金材料。在众多储氢合金中,Mg基储氢合金因其储氢量大且资源丰富,价格低廉,成为最具潜力的储氢材料2。然而,镁及其合金作为储氢材料也存在吸放氢速度慢、温度高及反应动力学性能差等缺点,因而严重阻碍了其实用化的进程。研究表明,将Mg基合金与具有催化活性的添加剂(过渡金属、过渡金属化合物、AB5型储氢合金等)混合球磨制备Mg基合金复合材料是提高Mg基合金吸/放氢性能的有效途径之一。针对上述Mg基储氢复合材料的研究,科研工作人员围绕以下几个方面展开工作:(1) 镁与单质金属复合在球磨过程中添加其它单质金属元素,特别是过渡金属元素对镁的吸放氢性能有明显的改善
3、作用。用于镁基材料复合的单质金属元素主要包括Pd、Fe、Ni、V、Ti、Co、Mo等。Milanese等3研究了Al、Cu、Fe、Mn、Mo、Sn、Ti、Zn、Zr对镁吸放氢性能的影响,发现A1、Cu、Zn有助于镁的吸放氢,只有Cu能降低MgH2的稳定性,从而使其放氢温度降至270 。Kwon等4球磨Mgl0%Ni5%Fe5%Ti混合材料,复合后其在300 、1.2 MPa H2条件下吸收氢,吸氢时间分别为5 min和1 h,吸氢量分别为5.31%(质量分数,下同)和5.51%。初始吸氢速率从200 升到300 时增长较快,但在350 时开始下降,放氢速率从200 升到350 时速度快速增长。
4、他们认为添加的Ni、Fe和Ti元素能够产生活性点,并降低颗粒粒度,从而减少氢原子的扩散距离,形成新的高活性表面。同时,Ni、Fe、Ti也起到活性基点的作用,并能在球磨过程中创造缺陷,这些缺陷可以起到活性基点的作用,产生裂缝并能降低颗粒粒度。Varin等5在镁中添加0.5%2.0%的纳米镍粉进行球磨储氢,结果表明,球磨70 h后,MgH2的粒径只有1112 nm,当镍的添加量增加到2%时,储氢速率明显加快,球磨15 h,储氢密度就可达到6.0%以上;与MgH2相比,放氢温度降低了50 ,放氢速度也有所加快,300 时17 min放氢量可达5.0%,与纯镁的吸放氢相比,其动力学性能得到了较大改善。
5、添加金属改善镁储氢性能的机理主要有以下几点:活性金属能在球磨过程中创造缺陷同时起到活性点的作用,促进镁的吸放氢;抑制镁颗粒的团聚;起到催化作用,改变反应路径或者促进H2的扩散及解离过程等。(2) 镁与化合物复合金属氧化物能在机械球磨过程中改善MgH2的动力学性能。普遍认为是由于它们对镁颗粒表面的氢脱离和结合有催化作用,加速了气固相反应。Oelerich等6将多种金属氧化物(Sc2O3、TiO2、V2O5、Cr2O3、Mn2O3、Fe3O4、CuO、Al2O3、SiO2)与MgH2混合球磨后发现,除SiO2外其余氧化物均能不同程度地改善其吸放氢性能,其中添加Cr2O3时吸氢速率最快,而添加V2O
6、5和Fe3O4时放氢速率最快。Ares等7用MgO证明氧化物对金属镁储氢具有明显的改善作用,MgH2与MgO一起球磨后,无论是吸氢过程还是放氢过程较未添加MgO时都有明显的改善。金属间化合物如LaNi5、Mg2Ni等也能明显改善Mg的储氢性能。Liang等8利用球磨法制备了Mg-x%LaNi5(x=10、20、30、50)复合材料。球磨30 min制备的Mg-30%LaNi5在1 MPa、300 条件下储氢,储氢密度为4.3%;而Mg-50%LaNi5在长时间球磨后转变为Mg+LaHx+Mg2Ni复合物,250 时500 s内储氢密度可达到2.5%,300 时储氢密度达到最大值4.1%。其动力
7、学性能得以改善的原因是复合物相界面的增加,以及多孔结构加快了其吸氢速度。卤化物(NaF、NaCl、MgF2和CrCl3)的添加能对Mg和Mg-Ni合金的吸放氢行为产生积极的影响9。卤化物与Mg或Mg-Ni合金机械合金化不仅促进了金属Mg的细化,而且修饰了金属Mg的表面,从而促进了吸放氢反应,特别反映在第一次氢化动力学上,这是由于卤化物能破坏金属表面的氧化层。Xie等10研究了纳米MgH2颗粒添加5%的TiF3在氢气气氛下球磨后的储氢性能,在300 、初始氢压为100 Pa条件下,样品6 min内放氢量为4.5%,在室温、2106 Pa氢压下,其l min吸氢量为4.2%。他们认为氢分子的分子轨
8、道与金属Ti的d层电子轨道发生强烈的交互作用,使得其活化势垒降低,从而在低温下能吸放氢。(3) 镁与碳材料复合碳材料如碳纳米管、石墨纳米纤维等具有较大的孔隙率和比表面积,且本身具有在低温下储存氢的能力,是一种潜在的储氢载体。自发现石墨能有效提高镁的储氢性能以来11,镁碳复合储氢就得到了越来越多的研究,许多学者试图制备出具有协同作用的镁碳复合材料,以获得介于二者之间的吸放氢温度。目前所研究的碳材料主要有石墨、碳纳米管、煤等。Chiaki等12采用球磨法制备了MgNi-石墨复合物,其最大放电容量为510 mAh/g,认为石墨与MgNi合金的作用发生在表面层,石墨给合金表面提供电子并在Mg、Ni间重
9、新分配,使合金表面发生化学态变化,Ni更容易从原合金中离析出并偏析至表面从而使表面层的Ni/Mg比增加,导致复合物的吸氢能力增强。Imamura等13在苯中球磨石墨和镁,10 h后复合材料的吸氢温度比纯镁低100 ,发现这种镁碳之间的协同作用被归因于充当球磨介质的溶剂的质子亲和作用。于振兴等14采用机械合金化方法,以氢气作为保护气氛(0.5 MPa),通过添加碳纳米管,制备出含有碳纳米管的镁基储氢材料(Mg-3Ni-2MnO2-0.25CNTs)。其储氢容量达到7.0%,吸氢过程在l00 s内完成,在0.1 MPa条件下放氢过程可在600 s内完成,放氢平台温度为280 。他们还发现,添加碳纳
10、米管后,可以提高镁基储氢材料的球磨效率,颗粒更加细化均匀。Lillo-Rbdenas等15将石墨、活性炭、多壁碳纳米管、碳纳米纤维等混合球磨,发现碳材料能减小球磨MgH2的粒度,阻止其粒度长大,降低放氢温度,其中多壁碳纳米管和碳纳米纤维在镍和铁的催化下将MgH2的高峰放氢温度降低到341 和322 。闫晓琦等16在Mg系合金中添加碳纳米纤维(CNF)进行储氢实验,结果表明,其储氢性能较纯CNF和纯MgNi合金都有很大提高,并提出了储氢机理:储氢过程中,合金表面催化裂解产生的氢以原子态形式储存在合金中,再向CNF中转移,并以分子态形式储存;放氢过程中,分子态的氢进入合金中形成原子态的氢,再在其表
11、面聚合成为分子态的氢。无烟煤由于低成本、易粉碎、分散性能好等特点在镁基复合储氢材料中也不断得到重视。Deepa等17在环己烯中,通过反应球磨法制备了无烟煤-镁复合材料,在常压、1273 K时析氢量为0.6%,由程序控制温度脱附仪联合质谱仪(TPD-MS)测定了析氢量,认为其是由环己烯在球磨过程中脱除的。对球磨制得材料放氢后进行了吸氢研究,结果表明,吸氢过程是可逆的,在室温和常压下快速吸收0.3%0.54%的氢气,球磨后结构没有完全饱和。卢国俭等18利用无烟煤制备微晶碳并将其与镁在氢气气氛下球磨,结果表明,微晶碳具有类似石墨的结构,较易磨至纳米级,层片之间能够储氢。同时微晶碳是镁的高效助磨剂,添
12、加40%(质量分数)的微晶碳,球磨3 h,即可将镁磨至2040 nm;添加微晶碳和铝能降低储氢材料的放氢温度。目前虽然还不清楚碳材料改善镁储氢的机理,但普遍认为是由于球磨时碳能有效降低颗粒粒度,增加比表面积,同时能阻止氧的扩散,从而阻止氧化层的形成并破坏已有氧化层,增加活性点数量,提高氢化动力学性能。总之,碳材料对镁基储氢的作用较为复杂,依赖多种因素,如添加量、球磨时间、碳材料与氢的交互作用等。二、研究主要成果 综合近年来对Mg基储氢材料的研究,主要进展情况如下:(1) 镁与单质金属复合,金属单质起到活性点的作用,能促进镁的吸放氢,抑制镁颗粒的团聚,祈祷催化作用,改变反应路径或者促进H2的扩散
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 镁基储氢 材料 发展 进展
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。