自动控制课程设计-—三容水箱液位控制系统设计.doc
《自动控制课程设计-—三容水箱液位控制系统设计.doc》由会员分享,可在线阅读,更多相关《自动控制课程设计-—三容水箱液位控制系统设计.doc(22页珍藏版)》请在咨信网上搜索。
1、自动控制课程设计 三容水箱液位控制系统设计指导老师 李 斌 专 业 电气工程与自动化 姓 名 周 欢 学 号 631224060332 2014 年 12 月 目录 1 问题描述12 建立模型22.1被控量的选择22.2操控量的选择22.3模型的选择32.3.1单容水箱数学模型32.3.2双容水箱的数学模型52.3.3三容水箱的数学模型63 算法描述73.1算法选择73.2控制器设计73.2.1 PID调节器73.2.1.1 PID调节器参数初值93.2.1.2 PI调节器93.2.1.3 PID调节器133.2.2 串级反馈调节134 参考文献19三容水箱液位控制系统的设计111 问题描述本
2、次设计以软饮料中的植物蛋白饮料的生产为背景进行设计。 植物蛋白饮料的生产工艺流程图如图1所示。生产过程大致为:原料选取浸泡磨浆过滤调配一次均质二次均质封装杀菌成品。其中过滤、调配、均质均可以在物料罐中进行。其中过滤,调配,均质等均可在物料罐中进行。在过滤环节将植物如大豆浸泡去皮后加入适量水研磨成浆体,经离心过滤机过滤分离,除去残余的豆渣和杂质等。调配环节将过滤后的浆体先加水稀释,然后按比例加配料。均质环节将调配后的浆体经均质机均质,使浆体进一步破碎,更加细腻。在生产过程中,可以将这三个环节看为一个三容水箱模型来进行相应的控制。图1 植物蛋白饮料生产流程图现代生产过程中将检测技术,自动控制理论,
3、通信技术和计算机技术结合在一起组成一套完整的过程控制系统,三容水箱模型简化图如图2所示。图2 三容水箱模型图1、物料从上级进料口进入过滤罐;2、三个物料罐从上至下分别为过滤罐,调配罐和均质罐,三个罐大小相同,底面积均为5,高均为6;3、罐的出口均在罐体侧面底部且出料口直径均为;4、进料口的压强为定值,即只要控制V1的开度即可控制流进三容箱系统的物料量,有如下关系:;其中为进料口流入的物料量,为比例系数,u为阀门的开度。现要设计控制系统控制物料罐F3内液位高度保持与设定值一致,对物料灌F1和物料灌F2中的液位高度无特殊要求,可将泵保持为全开状态。控制系统参数如下:(1) 三个水箱的截面积:;(2
4、) 三个水箱的最大深度:;(3) 三个水箱的初始液位:;(4) 三个水箱从高到低依次安置,上一级出水口在下一级进水口上方(5) 所有管道直径:,管道长度对控制的延时影响忽略不计;(6) 液位变送器采用BTY-G系列光纤液位变送器,测量范围:,输出:,环境温度:;(7) 调节阀采用ZRQM系列智能型电动调节阀,输入信号:,输出行程:,环境温度:,=0.012,线性阀阻R=0.01229。2 建立模型2.1被控量的选择 被控量的选择是控制系统的方案设计中必须首先解决的重要内容,他的选择对稳定生产,提高产品的产量和质量,节料节能,改善劳动条件,以及保护环境都有决定性的意义。而被控量的选择要求设计人员
5、必须根据工艺操作的要求,找出那些对产品的产量和质量、安全生产、经济运行、环境保护等具有决定性作用,能很好地反映工艺生产状态变化的参数。在植物蛋白饮料的生产过程中,控制要求就是使产品达到一定的浓度,充分发挥产品的营养作用。因而在物料罐内均质后的物料浓度最能反映生产过程的要求,把它作为被控量最好。但是由于,目前对于成分的检测还存在不少问题,例如,介质本身的物理、化学性质及使用条件的限制,使准确检测还有困难,取样周期也长,这样往往满足不了自动控制的要求,故本次设计采用物料罐内物料的液位这个间接参数作为被控量。2.2操控量的选择由于本次设计选用物料罐内物料液位作为被控量,故在整个液位控制系统中最适合作
6、为操纵量的便是物料的流速。它可以直接对均质物料罐内物料的液位进行控制,同时由于两两相连的物料罐之间的管道长度有限,对生产的延时影响忽略不计。故本次设计选用物料的流量作为操纵量。2.3模型的选择2.3.1单容水箱数学模型图4所示的就是单容水箱的结构图,图中不断有液体流入水箱,同时也有液体不断由水箱流出。被控参数为水箱水位h1,流入量Qin由改变阀V1的开度u加以控制流出量Q1则由用户根据需要改变阀2开度来改变。图4 单容水箱结构图先分析控制阀开度u与液位h1的数学关系。设初始时刻t=0时,单容水箱系统处于平衡状态,即有: (2-1) (2-2)t=0时刻控制阀开度阶跃增大,流入量Qin阶跃增大即
7、 (2-3)这就使 ,液位h1开始上升。随着h1上升,阀V2两侧差压变大,流出量也增大,这样在不断的调节下,当时,液位重新稳定在一个全新高度。在时间内,液体体积变化量为,由守恒定律可得: (2-4)化简为: (2-5)再改写为增量形式: (2-6)液位h1变化时,设流出单容水箱的液体的质量为m,流出单容水箱的液体流速为v,则有 (2-7)可得流出单容水箱的液体流速为: (2-8)则流出口的液体流速为:或 (2-9)其中,A1为水箱的底面积这是一个非线性关系,在小偏差条件下可线性化为: (2-10)其中 是流出阀门V2的流阻。将 , 代入式 可得 (2-11)取拉普拉斯变换得到单容水箱控制通道的
8、传递函数,即 (2-12)其中, 图5 单容水箱液位控制框图2.3.2双容水箱的数学模型双容水箱机构图如图6所示,两只串联工作的水箱的流入量Qin由控制阀V1的开度u加以控制,流出量Q2由用户根据需求改变控制阀3的开度而决定。图6 双容水箱结构图参考单容水箱的数学模型,根据守恒定律可列出下列方程: (2-13) (2-14) (2-15) (2-16)其中,为两个水箱的截面积,、为流阻,都以平衡状态为起始点计算的增量。对以上方程组取拉普拉斯变换得到双容水箱控制通道的传递函数,即 (2-17)其中, 。再根据其传递函数可得双容水箱的控制方框图,如图7所示。 Kuu(s) Q1(s) Q2(s)
9、H2(s) - - Q3(s)图7 双容水箱液位控制框图2.3.3三容水箱的数学模型三容水箱的结构图如图 3所示,h3为第三个水箱的液位高度。在双容水箱的控制方框图的基础上可以推导出三容水箱的控制方框图,如图 8所示。H3 Qin(s) Q1(s) Q2(s) Kuu(s) + + + - - - - 图8 三容水箱液位控制框图与单容水箱液位控制框图对比可以清晰地看出第二级水箱加入到控制系统中,只是在第一级水箱的液位输出端加入液位与流出流量的传递函数,然后串接第二级的液位控制的传递函数即可。得到模型后,利用上述参数计算,可得到如图9的三容水箱控制系统的具体过程传递函数的框图图9 三容水箱过程传
10、递函数的框图以上就是三容水箱数学模型的建立。3 算法描述3.1算法选择在过程控制中,液位控制一般采用P调节足够。但是,在本次设计中,三个水箱(三个一阶惯性环节)依次串联,构成三阶系统,如果仅使用P调节,存在动态响应速度慢、有稳态误差,因而不满足题设中对进行精确控制的要求。为消除稳态误差,要采用PI调节,兼顾响应时间,因此算法选择PID。另外,还有一个必须注意的地方:在对进行控制的同时,、也要得到有效的调节。尤其是容器都有高度限制,因此,、的动态响应不能有过大的超调量,否则,液体会溢出容器,严重影响实际生产过程,更达不到对调节效果。为了对、进行有效控制,本次设计将尝试采用多回路串级调节。其中,内
11、环调节的目的是控制、响应更快,超调量更小,从而使提高对的控制效果。因此,我们的控制方案是串级控制:对于控制精度要求不高的内环,采用P调节或超前校正以提高响应速度;对于品质要求高的外环,采用PID或者PI调节,消除静差,减小调节时间。3.2控制器设计 利用MATLAB的Simulink 对三容水箱的模型进行仿真,如图9分析阶跃响应特性。单位阶跃输入作用下,三个水箱液位变化如下图:图10 阶跃响应曲线图11 阶跃响应曲线图12 阶跃响应曲线 从图中可以看出,、的响应时间依次增加,分别为2000s、3000s、3500s左右。但是、稳态误差基本相等,对于单位阶跃而言,ess0.02。可见三容水箱具有
12、由于三个惯性环节串联,响应速度慢,有稳态误差但无超调。并不符合实际生产的要求。3.2.1 PID调节器3.2.1.1 PID调节器参数初值用Ziegler-Nichols 法设计PID调节器参数初值,利用matlab仿真平台编写程序如下,绘制根轨迹图:G1=tf(0.012,5*81.35 1);G2=tf(1,5*81.35 1);G3=tf(81.35,5*81.35 1);G=G1*G2*G3;rlocus(G)hold on图17 三容水箱模型根轨迹图根据三容水箱模型的根轨迹图可知临界增益,临界频率.所以。3.2.1.2 PI调节器在过程控制中,通常只需要在设定液位的某个范围内保持液位
13、恒定就可以了。流速并不是一个值得很关心的因素。在过程中,它自身就有一个积分行为。而且,如果流动速率被当做操控变量,那么控制器的设定必须要限制流动速率以避免突然的溢出。因此简单的P调节控制器通常就适用了。但是由于本次设计中,对于的控制要求精确,故采用PI调节来达到实际生产目的。 根据Ziegler-Nichols ultimate method可知 (3-1) (3-2)故控制器的传递函数为: (3-3)其仿真框图如图18所示:图18 PI调节的仿真框图图19 PI调节的响应曲线图20 PI调节的响应曲线图21 PI调节的响应曲线从图19、20、21中可以得到,响应时间太长,完全不符合实际生产的
14、要求,、超调也很大,分别为70%和30%。效果不如不加控制器的好。3.2.1.3 PID调节器本次设计采用无超调量这种情况,即 (3-4) (3-5) (3-6)在实际生产过程中 (3-8)其中为系数,取值范围为,本次设计中,取,则 (3-9) 其仿真框图如图22所示:图22 PID调节的仿真框图得到其阶跃响应曲线如下所示:图23 PID调节H1的响应曲线图24 PID调节H2的响应曲线图25 PID调节H3的响应曲线从图中看到,虽然实现了无静差控制,但响应时间比较长,、的响应时间分别为3000s、2750s、2900s。超调量分别为15%、18%、5%。相对于单回路控制而言,明显提高了动态响
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制 课程设计 水箱 控制系统 设计
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。