年产15万吨甲醇合成二甲醚工艺大学本科毕业论文.doc
《年产15万吨甲醇合成二甲醚工艺大学本科毕业论文.doc》由会员分享,可在线阅读,更多相关《年产15万吨甲醇合成二甲醚工艺大学本科毕业论文.doc(52页珍藏版)》请在咨信网上搜索。
年产15万吨甲醇合成二甲醚工艺设计 The Process Design of 150kt/a Dimethyl Ether Prepared by Methanol 目 录 摘要 I Abstract II 引 言 1 第一章 文献综述 3 1.1 二甲醚概况 3 1.1.1 二甲醚的发展状况 3 1.1.2 二甲醚的传统领域的应用及其拓展 4 1.2 国内二甲醚市场简况 5 1.2.1 现状 5 1.2.2 国内市场预测 7 1.3 国外二甲醚市场简况 8 1.3.1 现状 8 1.3.2 国外市场预测 10 1.4 原料说明 11 1.4.1 物理性质 11 1.4.2 化学性质 12 1.5 二甲醚的性质 12 1.5.1 化学性质 12 1.5.2 物理性质 13 1.5.3 DME的毒性 13 第二章 工艺流程介绍 14 2.1生产方法简述 14 2.1.1 甲醇脱水制二甲醚 14 2.1.2 合成气直接合成二甲醚 15 2.2 工艺流程说明 17 2.2.1 原料甲醇 18 2.2.2 反应 18 2.2.3 合成气冷却 18 2.2.4 二甲醚精馏 18 2.2.5 甲醇塔和二甲醚精馏塔 18 2.3生产工艺特点 19 2.4主要工艺指标 19 2.4.1 二甲醚产品指标 19 2.4.2 催化剂的使用 20 第三章 塔设备计算及选型 21 3.1 汽化塔及其附属设备的计算选型 21 3.1.1 物料衡算 21 3.1.2 热量衡算 23 3.1.3 理论板数、塔径、填料选择及填料层高度的计算 27 3.1.4 汽化塔附属设备的选型计算 32 3.2 合成塔物料衡算 33 3.3 精馏塔及其附属设备的计算选型 33 3.3.1 物料衡算 34 3.3.2 热量衡算 35 3.3.3 附属设备的选型计算 37 3.3.4 理论塔板数的计算 38 3.3.5 精馏塔主要尺寸的设计计算 38 3.3.6 塔径设计计算 40 3.3.7 填料层高度的计算 42 3.3.8 填料塔液体分布装置 43 3.3.9填料塔壁厚的计算 44 结 论 45 致 谢 46 参考文献 47 附 录 48 年产15万吨甲醇合成二甲醚工艺设计 摘要:作为LPG和石油类的替代燃料,目前二甲醚(DME)倍受注目。DME是具有与LPG的物理性质相类似的化学品,在燃烧时不会产生破坏环境的气体,能便宜而大量地生产。与甲烷一样,被期望成为21世纪的能源之一。目前生产的二甲醚基本上由甲醇脱水制得,即先合成甲醇,然后经甲醇脱水制成二甲醚。甲醇脱水制二甲醚分为液相法和气相法两种工艺,本设计采用气相法制备二甲醚工艺。将甲醇加热蒸发,甲醇蒸气通过γ-A12O3催化剂床层,气相甲醇脱水制得二甲醚。通过设计计算得到二甲醚精馏塔的填料层总高是7.8米,精馏段的填料层高度为3.8米,提留段的填料层高度为4.0米。填料塔的塔径为1.0米,塔高为:10.895米。经过精馏得到最终含量为99.9%的二甲醚,达到了预期的目标。 关键词:二甲醚;甲醇;工艺设计;精馏 The process design of 150kt/a dimethyl ether prepared by methanol Abstract: As LPG and oil alternative fuel, DME has drawn attentions at present. Physical properties of DME is similar for LPG, and don’t produce combustion gas to damage the environment, so, It can be produced largely. Like methane, DME is expected to become 21st century energy resources. DME is prepared by methanol dehydration, namely, synthetic methanol first and then methanol dehydration to dimethyl ether by methanol dehydration. Methanol dehydration to DME is divided into two kinds of liquid phase and gas-phase process. This design uses a process gas of dimethyl ether prepared by dimethyl. Heating methanol to evaporation, methanol vapor through the γ-A12O3 catalyst bed, vapor methanol dehydration to dimethyl ether by. Dimethyl ether is obtained by design calculation of rectification tower packing layer is 7.8 meters high,always rectifying packing layer height is 3.8 meters,the stripping section of packing layer height is 4.0 meters.The packed tower diameter is 1.0m. The packed tower height is 10.895 meters. Finally by the distillation of dimethyl ether content reached 99.9%,achieved the desired goal. Key words: dimethyl ether; methanol; process design; rectification II 引 言 二甲醚又称甲醚、木醚、氧二甲,(Dimethyl Ether,简称 DME)是最简单的脂肪醚重要的甲醇下游产品之一,分子式C2H6O,是乙醇的同分异构体,结构式CH3—O—CH3,分子量46.07,是一种无色、无毒、无致癌性、腐蚀性小的产品。DME因二甲醚的理化性质比较独特,除作为有机化工原料广泛用于制药、染料、农药等,还用于替代氟里昂用作汽溶胶喷射剂和制冷剂,由于其良好的燃料性能,具有实用、通用、环保、安全、质优价廉的优点,因其燃烧效果好和污染少而被称为“清洁燃料”,最近作为民用代用燃料和柴油代用燃料,引起广泛关注。 (1)替代氯氟烃作气雾剂[23]20世纪70年代,二甲醚开始被用作气雾剂,以取代破坏臭氧层的氟里昂。(2)用作制冷剂和发泡剂,由于DME的沸点较低,汽化热大,汽化效果好,其冷凝和蒸发特性接近氟氯烃,因此DME作制冷剂非常有前途。国内外正在积极开发它在冰箱、空调、食品保鲜剂等方面的应用,以替代氟里昂。关于DME作发泡剂,国外已相继开发出利用DME作聚苯乙烯、聚氨基甲酸乙酯、热塑聚酯泡沫的发泡剂。发泡后的产品,孔的大小均匀,柔韧性、耐压性、抗裂性等性能都有所增强。(3)用作化工原料 ,DME作为一种重要的化工原料,可合成多种化学品及参与多种化学反应:与SO3反应可制得硫酸二甲酯;与HCl反应可合成烷基卤化物;与苯胺反应可合成N , N - 二甲基苯胺;与CO反应可羰基合成乙酸甲酯、醋酐,水解后生成乙酸;与合成气在催化剂存在下反应生成乙酸乙烯;氧化羰化制碳酸二甲酯; 与H2S反应制备二甲基硫醚。此外,利用DME还可以合成低烯烃、甲醛和有机硅化合物。(4)用作燃料,近几年来,在各国寻求清洁燃料的过程中,二甲醚的良好燃烧性能和低污染排放的特性使其日益受到重视。二甲醚作为清洁燃料具备如下特征:(1)资源量丰富,来源广;(2)环境友好,其排放物对环境的影响很小;(3)技术可行、成熟,可在大范围内使用;(4)经济可行,其成本有竞争力;(5)易于实现,其运行所需要的基础设施和现有基础设施基本相容,不需要另装一套装置。 本设计流程简洁明畅,工艺条件温和,操作简易方便。而且设备台数较少,设备制作立足于国内现状,均能在国内制造而不需进口,可大大降低项目投资。按国家现行基本建设政策和市场价格对本项目进行了财务评价计算。工程总投资估算值14300万元,项目的内部收益率所得税前为13.82%,高于基准收益率12%。其它各项效益指标及盈亏平衡分析结果均表明本项目具有很强的抗风险能力。上述各方面问题的研究结果表明,15 万吨/年二甲醚项目符合国家产业政策和未来能源市场发展方向,市场预测乐观,工艺方案合理,工艺技术成熟可靠,投资估算和财务评价结果也表明项目经济效益明显。 本设计包括设计说明书和图纸两部分。说明书主要包括工艺流程的确定,物料衡算,热量衡算,工艺设备的设计及选型等。图纸包括工艺流程图,主设备图等。 第一章 文献综述 1.1 二甲醚概况 1.1.1 二甲醚的发展状况 自20世纪70年代,二甲醚开始被用作气雾剂,以取代破坏臭氧的氟利昂。近几年来,在各国寻求清洁车用替代燃料的过程中,二甲醚的良好燃烧性能和低污染排放特性使其日益受到重视。 二甲醚(DME)常温常压下是一种无色低毒的可燃性气体,性能与液化石油气相似,燃烧时不析碳,无残液,燃烧废气无毒,是一种理想的清洁燃料。DME还是一种新型的、理想的、可替代车用燃料的“21世纪的绿色燃料”。随着环境污染的日益严重及石油资源的日益匮乏,对二甲醚的需求量迅速增加,因此二甲醚的合成研究已成为各国科技人员的研究焦点。 二甲醚是21世纪的超清洁燃料,无论是作为民用燃料、或替代柴油、汽油作为汽车燃料、或是用于发电,其制备、储运等都比较容易解决,并能促进新一代汽车、电力等工业的发展。目前,二甲醚发展的关键问题在于配套措施不完善、市场发展不成熟、二甲醚使用观念有待更新。 1.1.2 二甲醚的传统领域的应用及其拓展 (1) 传统领域的应用 第一 做气雾剂、制冷剂和发泡剂。 DME作为停止使用的氯氟烃的替代物,在气雾剂制品中显示出良好的性能,如:①不污染环境,对臭氧破坏系数为零;②DME在水中溶解度为34%,若加6%的乙醇,则可与水混溶,它与各种树脂也有极高的溶解能力;③毒性很微弱,用在化妆品上观察不到有什么问题;④可用水或氟制剂作阻燃剂;⑤使喷雾产品不易致潮,加之与其他气雾剂相比,其成本低、价格便宜从而被认为是新一代理想的气雾推进剂。在西欧各国已经成为民用气溶胶制品的氯氟烃的替代品。目前DME在世界喷射剂的用量中居第二位,仅次于碳氢化合物,其次,由于DME容易液化的特性,许多国家正在开发以DME代替氯氟烃做制冷剂的技术。Bohnenn报道了用DME与氟里昂混合制成特种制冷剂,通过大量实验后,认为随着DME含量的增加,制冷能力增加,能耗降低并且在冷冻食品时可免除异味和臭味。另外Kohl等人报道了以DME、丙烷、丁烷制无氟制冷剂的方法。 第二,DME作为化学中间体,主要用于制造硫酸二甲酯。 DME同发烟硫酸反应可以生成硫酸二甲酯;同苯胺反应生成高纯N、N-二甲基苯胺,脱水成乙烯,羰基化可以制取醋酸甲酯;与硫化氢反应生成二甲基硫醚,进而可生成二甲基亚砜。 (2) 新近拓展的应用领域 作为新型高效清洁燃料是DME应用领域的一个崭新的拓展应用领域。 DME作为民用燃料比液化气具有更优良的物理化学性能(如表1.1,表1.2所示)。由于DME的分子结构与烃类不同,只有C-H与C-O键,没有C-C键,所以燃烧时无黑烟,CO与NOx排放量很低,符合洁净燃料的要求;而且燃烧性能良好,燃烧废气无毒,完全符合卫生标准;单一组成,无残液;当温度在37.8℃时,二甲醚的蒸汽压低于1378kPa,符合液化石油气的要求(如表1.1)所示。 表1.1 DME液化气与液化石油气性质比较 项目 分子量 压力Mpa (60℃) 燃烧温度 (℃) 爆炸下限 (%) 理论空气量 预混气热值 () LPG DME 56.6 46.07 1.92 1.35 2055 2250 1.7 3.45 11.32 6.96 3903 4219 表1.2 DME与0#柴油的比较 对比项目 DME 0#柴油 分子量 46.07 190~220 沸点(℃) -24.9 180~360 十六烷值 55~60 40~50 低热值(kJ/kg) 28840 42500 理论空燃比 9 14.6 氧含量(%) 34.8 — 硫化物 — 有 1.2 国内二甲醚市场简况 1.2.1 现状 中国DME生产起步较晚,但发展加快。1994年广东中山化工厂建成2500吨/年DME生产装置。此前,只有江苏昆山化工厂有少量生产。近几年,国内陆续又有一些厂家投产DME,其中生产规模较大的有山东临沂鲁明化工有限公司、广东中山精细化工实业有限公司、江苏吴县合成化工厂、江苏昆山化工原料厂、湖南雪纳新能源有限公司﹑山东久泰科技股份有限公司及泸天化公司等企业,年总产量已超过50万吨。 近年来,我国DME的生产发展迅速。2002年全国DME总生产能力仅有3.18万吨/年,产量约为2万吨/年,开工率处于63%的较低水平。到2006年,发展到30多家生产企业,年生产能力约48万吨,产量约32万吨,开工率67%。4年间能力和产量迅速增长,起年均增长率分别为79%和96%。 宁夏银川正在筹划的年产83万吨DME项目,计划今年年底投产,初步决定采用美国空气产品与化学品公司技术。计划投资47.8亿元。宁夏石化集团公司、中煤四达矿业公司、西安交通大学、原化工部第二设计院、中国成达化学工程公司等参与合作。该项目将由煤炭为起始原料生产DME。项目建设将分二个阶段,第一阶段生产21万吨/年,第二阶段再扩增62万吨/年。由美国贸易发展署出资援助招标、美国福陆公司中标所作的宁夏煤基DME(一期)83万吨/年项目报告已于2004年4月完成,后因资金技术问题项目尚未启动。宁夏煤炭资源丰富,但因为地处西部,且邻省陕西、内蒙古、甘肃等均为富煤省份,煤炭外运十分困难。宁夏决定大力发展电力和煤化工等产业,建设大型DME厂是其中一项。美国政府出资67.5万美元对该项目给予援助。 表1.3 2006年我国DME主要生产厂家及其能力 企 业 生产工艺 生产能力(吨/年) 广东中山凯达有限公司 重庆英力燃化有限公司 江苏昆山化工厂 威气雾剂公司 河南内乡化工局 安徽蒙城化肥厂 义乌光阳化工公司 渭河煤化工集团公司 陕西新型燃料燃具公司 山西浑源化肥厂 山东临沂鲁明化工有限公司 湖北田力实业公司 广州广氮集团公司 山东久泰股份有限公司 湖南雪纳新能源有限公司 中国泸天化股份有限公司 山西潞安 宁夏银川 内蒙古鄂尔多斯市-山东临沂市 两步法-气相脱水 浆态床一步法 两步法-气相脱水 两步法-气相脱水 两步法-气相脱水 两步法-气相脱水 两步法-气相脱水 两步法-气相脱水 两步法-气相脱水 浆态床一步法 两步法-液相脱水 固定床一步法 两步法-气相脱水 两步法-液相脱水 两步法-气相脱水 两步法-气相脱水 古定床一步法 流态床一步法 流态床一步法 12500(94/98年分期投产) 3000(04年4月试产/已停) 1000(91年3月试产) 800(95年3月试产) 10000(04年8月试产) 5000(04年10月试产) 2500(98年9月试产) 10000(05年10月试产) 500(97年6月试产) 5000(01年1月试产) ★5000(04年12月试产) 1500(97年9月试产,现停产) 5000(98年10月试产) ★30000(05年12月试产) 30000(05年11月投产) 100000(05年9月投产) 150000(筹建中) 830000(筹建中) 1000000(筹建中) 近几年DME生产规模较大的有山东临沂鲁明化工有限公司、广东中山精细化工实业有限公司、江苏吴县合成化工厂、江苏昆山化工原料厂、湖南雪纳新能源有限公司、 山东久泰科技股份有限公司等企业,年总产量已超过20万吨。国内上述大部分企业生产的DME产品主要面向气雾剂市场,到2005年底为止,我国DME的正常生产能力为15-25万吨/年。 1.2.2 国内市场预测 第一,DME作为柴油替代燃料或掺烧汽油市场。随着国民经济的发展,我国对柴油和汽油的需求量每年增长的幅度不断加大。统计数据显示,目前柴油的需求量每年的速度增 长为7%,预计到2010年我国对进口石油的依存度将超过50%。尤其是我国环保能源特别是洁净车用燃料一直十分紧缺,因此发展清洁车用燃料成为我国经济高速发展面临的现实问题。DME作为柴油替代能源在性能上具有明显的优势,而作为汽油添加剂进行掺烧在理论上证明可以提升汽油的品质,且技术方面不存在难以克服的问题,因此这是一个普遍看好的市场。 第二,DME混烃燃料市场。目前我国液化气年消费量在3500万~4000万吨,每年约需进口2000万吨。DME作为超洁净能源,与液化气相比在性能上具有显著的优势。如果用DME替代进口液化气,将至少形成约2000万吨/年的DME需求。 第三,DME作为日用化工原料及化工中间体市场。DME除作为燃料以外,主要用于制气雾剂、制冷剂和发泡剂。DME进入这一市场的特点是附加值高,因而利润空间极大。 我国早期二甲醚的生产能力很低,只有江苏吴县合成化上厂、武汉硫酸厂等少数几个厂家生产,总产量约为3000吨/年,远远不能满足国内市场的需求,高纯度二甲醚(>99.9%)全部依赖进口。近年来,我国在二甲醚液化气、醇醚燃料等方面取得了突破性进展。其中中科院山西煤化所研制的甲醇制二甲醚催化剂,催化与分离精制工艺,可用于生产燃料级(95%一98%)与化工级(>99%)二甲醚,特别适合于已有甲醇的中小氮肥厂建立中小规模(10的生产装置。上海石油化工研究院开发成功的二甲醚反应蒸馏新技术,具有过程简单、投资省、消耗低、操作控制容易,不产生废酸、废渣和含酸废水等优点,甲醇单程转化率达80%-85%,选择性大于99.9%。化工部西南化工研究院开发的新型民用代用燃料一醇醚燃料,目前已在河南、山西、贵州、安徽等省建立了5套生产装置,其中4套为万吨级装置。广东省中山精细化工实业有限公司采用西南化工研究院开发的甲醇催化转化二步法制二甲醚生产技术建立了2500吨/年生产装置。生产高纯度二甲醚,产品主要用作气雾剂。最近,安徽省蒙城县化肥厂也建立了2500吨/年高纯度二甲醚生产装置,产品纯度达99.95%以上。山东临沂已经建成30000吨/年二甲醚生产装置,已于2005年10月份投产,同时也在规划100万吨/年二甲醚的项目。另外,陕西新型燃料燃具公司开发成功了二甲醚液化气灶(JZMZ一A型),将大大促进二甲醚作为燃料在我国的推广和普及。 纯度大于95%的甲醚可作为液体石油气替代燃料,若二甲醚能大规模地生产,显著地降低成本,将能在国内促进二甲醚的消费,目前己在部分地区使用二甲醚,但因技术经济上因生产规模太小而导致生产成本较高,影响其推广应用。我国石油液化气进口量近年迅速增加,19%年进口量为354.7万吨,1998年达477万吨,预计到2005年进口量达929万吨,2010年将达1460万吨。因此二甲醚作为替代燃料的市场非常广阔。 仅以西南地区的重庆、成都市为例,目前两市的气化率很高,基本上都是用天然气,两地的餐饮业十分发达,LPG消耗量极大,由于DME清洁燃烧完全、无黑烟、对人体无害,在餐饮业中替代LPG具有无可比拟的优势。据保守估计,重庆市的LPG需求量在8万吨/年,成都市的LPG需求量在5万吨/年,四川省的总需求量在25万吨/年,其市场前景非常乐观。 1.3 国外二甲醚市场简况 1.3.1 现状 目前世界上DME的生产主要集中在美国、德国、荷兰和日本等国,2006年世界总生产能力预计29.4万吨/年,产量约22万吨,开工率75%。 国外DME的主要生产厂家有美国的Dupont公司、荷兰的AKZO公司、德国的DEA公司和 UnitedRhine Lignite Fuel 公司等,其中德国DEA公司的生产能力最大为6.5万吨/年。 二甲醚作为一种新型、清洁的民用和车用燃料,被看作是柴油或LPG/CNG的优秀替代品,其作为燃料的市场血球增长将会非常惊人。2000年,全球有400万辆LPG汽车,400万辆乙醇汽车、100万辆CNG汽车,还有部分甲醇汽车。以美国为例,2000年美国使用替代燃料(LPG和CNG)的汽车为42万辆,预计2010年为330万辆。 目前美国替代燃料消费量折合当量汽油约为100万吨(352×106加仑当量汽油),约占当年全部燃料消费量的0.2%。如果美国代用燃料的比例提高到5%,起需求量将达到2500万吨,可见替代燃料的市场前景是相当可观的[20]。 亚洲地区是世界上柴油消费增长最快的地区,据国外研究机构预测,二甲醚作为替代燃料,2008年亚洲地区的年需求量达4000万吨,可见,由于二甲醚具有其它替代燃料不可比拟的优势,将会成为柴油的主要替代燃料,具有难以估量的市场前景。 由于二甲醚的市场需求潜力十分巨大,在世界范围内,其建设已经成为热点项目,一些大型的二甲醚装置已在积极筹建之中(见表1.4),如果这些项目到2015都建成投产将新增二甲醚生产能力793万~893万吨。届时世界二甲醚总能力将达到1082万~1182万吨。 国外己有建设大型工业化DME装置的计划。日本东洋工程公司(TEC)完成建设单系列250万吨/年 DME装置的可行性验证。采用天然气生产甲醇再转化成DME的二步法路线,以中东低价天然气为原料,生产DME的成本为100~120美元/吨。意味着DME作为清洁燃料可与LPG相竞争,DME与LPG相似,易于贮存在现有的LPG终端和用船舶运输。TEC的流程组合MFR-Z甲醇工艺和采用专利铝基催化剂的脱水新技术。装置设计为10000吨/天甲醇设施,可提供7000-8000吨/天 DME反应器进料。总费用约6.6亿美元,比单独建设甲醇装置仅高约10%。已于2007年建成。 BP公司、印度天然气管理局、印度石油公司合作投资6亿美元(各持股50%、24%、24%)计划建设商业规模的DME生产厂,建设工作已于2002年开始。拟采用托普索公司DME合成技术,利用24亿立方米天然气,年生产DME180万吨,用以替代石脑油、柴油和LPG。已于2006年元月投产,2007年向外供应DME。 日本财团(三菱瓦斯化学公司、日挥公司、三菱重工公司和伊藤忠商事各持股25%)成立的合资公司将在澳大利亚建设大规模DME装置。年生产DME140-240万吨,于2006年投产,产品销往日本和东南亚市场。 表1.4 筹建中的二甲醚装置(不完全统计) 单位:万吨/年 公司名称 生产能力 建设地点 投产日期 日本财团(三菱瓦斯化学、日挥、三菱重工) 140.0~240.0 澳大利亚(间接一步法) 2006年 日本东洋工程公司 250 中东(二步法) 2005~2006 某公司在伊朗建设 80 伊朗Zagros 2006年规划 日本钢管公司等8家 170 西澳大利亚(NG一步法) 2006年开始规划 日本三菱瓦斯化学(MGC) 150 澳大利亚 道达尔菲纳埃尔夫公司和日本8家公司合作 80 小计 873.0~973.0 世界2006年已有能力 209.4 2010年合计能力 1082.4~1182.4 日本千代田和石川岛播磨重工公司联合为日本JEE控股公司进行DME装置工程设计,JEE公司是工程和钢铁控股公司,2002年由川崎钢铁和NKK公司联合而成。JEE公司将在海外建设大规模DME装置,于2006年建成。该装置将采用JEE工艺从合成气间接生产DME。JEE工艺DME装置可使用天然气、烃类和生物质作为原料。 1.3.2 国外市场预测 目前,世界上二甲醚的总生产能力约为700万吨/年,主要生产厂家有杜邦公司,德国联合莱因褐煤燃料公司,德国汉堡DMA公司,荷兰阿克苏公司,日本和我国台湾省等。早期的二甲醚主要用作甲基化试剂用于生产硫酸二甲酷,1986年西欧生产的约2万吨二甲醚,有9000吨用于生产硫酸二甲酷。随着人们环保意识的增强,二甲醚在气溶胶推进剂方面的用量逐年增加,1990年欧洲生产的4.5吨二甲醚,其中约有3.5万吨用于气溶胶工业,其它用作中间体。目前世界二甲醚的产量约为600万吨/年,预计到2010年需求量可突破1100万吨/年。 当前世界各国都在注重二甲醚作为替代燃料的研究,届时二甲醚的需求量将大大增加。日本一个开发合成二甲醚技术的国家计划已经展开,NKK公司、太平洋碳钢公司和住友金属工业公司将利用通产省提供的资金(18亿日元)进行相关的研究与开发工作,目标是设计一种方法通过用煤气和最新开发的催化剂直接合成低成本的二甲醚。去年印度石油公司、煤气权力公司和石油研究院已经与阿莫科印度开发公司签署了开发和销售二甲醚作为多用途燃料的协议,使二甲醚商业化并提供技术,目前正着手可行性研究。阿莫科公司已与丹麦托普索公司(Haldor Topsoe)签订了进一步开发二甲醚技术的协议。最近日本有人撰文探讨二甲醚作为清洁燃料替代柴油,对二甲醚的价格和燃料的性能跟柴油和汽油作比较,认为直接合成二甲醚法在今后的实际应用中没有问题,且成本方面具有较大竞争力。美国的有关试验也证明,二甲醚作为柴油车燃料可以满足严格的1988年美国加利福尼亚超低排放交通工具法规的要求,经济上也很合理。 从二甲醚及柴油的消耗结果表明,按能耗计,低功率下,二甲醚消耗高于柴油,但在较高功率时,二者是相近的。用二甲醚作为汽油添加剂比其它醚类化合物具有更高的O/CH值,即二甲醚的含氧量高,可以使汽油燃烧更加完全。且在某种程度上可以提高汽油的汽化效率,降低汽油的凝固点。据资料介绍,美国己将二甲醚添加到航空煤油中,这大大提高了发动机的工作效率且效果很好。目前日本和印度都研究在中东建设大型二甲醚装置,将二甲醚运回国内作发电燃料的可行性,其它许多发达国家都在进行二甲醚作为替代燃料的研究,解决全球能源紧张的局面。 1.4 原料说明 原料名称:甲醇 分子式CH3OH,相对分子质量32.04。 本设计采用的甲醇原料浓度为90%(质量分数)。 1.4.1 物理性质 甲醇是最简单的饱和脂肪醇,密度0.791g/cm3,沸点63.8℃,自燃点385℃,蒸汽压96.3mmHg,常温常压下纯甲醇是无色透明,易挥发、可燃,略带醇香味的有毒液体。甲醇可以和水以及乙醇、乙醚等许多有机液体无限互容,但不能与脂肪烃类化合物相互溶,甲醇蒸汽和空气混合能形成爆炸性混合物,爆炸极限为6.0%-36.5%(体积)。 1.4.2 化学性质 甲醇作为最简单的饱和脂肪醇因此具有脂肪醇的化学性质,即可进行氧化、酯化、羰基化、胺化、脱水等化学反应,在此只介绍几种重要的化学反应。 脱水反应: 甲醇在浓硫酸或其它催化剂的催化作用下脱水生成二甲醚,是工业制备二甲醚的重要方法; 主反应: 2CH3OH→CH3OCH3+H2O+Q △H298=10.92KJ/mol 副反应: ⑴ CH3OH→CO+2H2O ⑵ 2CH3OH→C2H4+2H2O ⑶ 2CH3OH→CH4+2H2O +C ⑷ CH3OCH3→CH4+CO+ H2 ⑸ CO+H2O→CO2+ H2 氧化反应: 甲醇在电解银催化剂下可被空气氧化成甲醛,是重要的工业制备甲醛的方法; 酯化反应: 甲醇可与多种无机酸和有机酸发生酯化反应,甲醇和硫酸发生酯化反应生成硫酸氢甲酯,硫酸氢甲酯经减压蒸馏生成甲基化试剂硫酸二甲酯; 羰基化反应: 甲醇和光气发生羰基化反应生成氯甲酸甲酯,进一步反应生成碳酸二甲酯; 裂解反应: 在铜催化剂上,甲醇可裂解生成CO和H2。 1.5 二甲醚的性质 1.5.1 化学性质 二甲醚在辐射或加热条件下会分解成甲烷、乙烷、甲醛、二氧化碳及一氧化碳(产物取决于反应条件及催化剂)。二甲醚可作为烷基化合剂,在很多场合中,它具有甲基化反应性能,例如在硅酸铝催化剂存在的条件下,二甲醚可以与苯发生烷基化反应而生成甲苯、二甲苯及多烷基苯。二甲醚与一氧化碳反应可生成乙酸或乙酸甲脂;与二氧化碳反应则生成甲氧基乙酸。当与氰化氢反应时则生成乙腈。此外,二甲醚可与三氟化硼形成络合物,其分子式(CH3)2OBF3,此络合物在空气中发烟,而在水或醇中则可分解。DME还可选择性氯化为各种氯化衍生物。无致癌性、腐蚀性甚微。 1.5.2 物理性质 DME是具有挥发性醚味的无色气体,有令人愉快的气味,燃烧时的火焰略带光亮。在常温,常压下为气态,在压力储罐内为液体。 表1.5 DME的主要物理化学性质 分子式 CH3OCH3 蒸汽压(20℃) 0.53MPa 摩尔质量 46.07 气体燃烧热 31.58kJ/kg 熔点 -141.5℃ 蒸发热(-24.8℃) 467.4kJ/kg 沸点 -24.9℃ 自燃温度 350℃ 临界温度 128.8℃ 爆炸极限(空气中) 3.45-26.7VOL% 临界压力 5370Pa 在汽油中的溶解度 64%(-40℃) 对水的相对密度 0.66 对空气的相对密度 1.62 液体密度(20℃) 0.661kg/L 闪点 -41.4℃ 蒸汽密度(10℃ 1atm) 1.92kg/m3 1.5.3 DME的毒性 DME的毒性很低,气体有刺激及麻醉作用的特性,通过吸入或皮肤吸收过量的此物品,会引起麻醉,失去知觉和呼吸器官损伤。 小鼠吸入 225.72g/ m³ 麻醉浓度 猫吸入 1658.85g/ m³ 深度麻醉 人吸入 154.24g/ m³×30min 轻度麻醉 人吸入 940.50g/ m³ 有极不愉快的感觉、有窒息感 第二章 工艺流程介绍 2.1生产方法简述 二甲醚的生产方法主要有一步法和二步法两种。 一步法以合成气(CO+H2)为原料,在甲醇合成以及甲醇脱水的复合催化剂上直接合成二甲醚,再提纯得到二甲醚产品。 二步法是以合成气制得甲醇,然后甲醇在固体催化剂作用下脱水制得二甲醚,所用催化剂选择性高,特别适用于高纯度二甲醚生产。 2.1.1 甲醇脱水制二甲醚 二甲醚可由甲醇脱水制得。此工艺在山东临沂新建的30000吨/年二甲醚生产装置上采用。最早采用的脱水剂是浓硫酸,反应在液相中进行。将甲醇和硫酸的混合物加热可得: CO+2H2=CH3OH CH3OH十H2SO4=CH3HSO4+H2O (<100℃时) CH3HSO3+CH3OH=CH3OCH3+ H2SO4 (<100℃时) 该过程具有反应温度低、转化率高(>80%)、选择性好(99%)等优点,但也存在设备腐蚀严重、釜残液及废水污染环境、催化剂毒性大、操作条件恶劣等缺点,选择该工艺可能性较小。 1965年,美国Mobil公司与意大利ESSO公司都曾利用结晶硅酸盐催化剂进行气相脱水制备DME,其中Mobil公司使用了硅酸铝比较高的ZSM-5型分子筛,而ESSO公司则使用了0.5-1.5nm的含金属的硅酸铝催化剂,其甲醇转化率为70%,DME选择性>90%。1981年,Mobil公司利用HZSM-5使甲醇脱水制备二甲醚,并申请了专利,反应条件比较温和,常压、200℃左右即可获得80%甲醇转化率和>98%DME选择性。1991年,日本三井东亚化学公司开发了一种新的甲醇脱水制DME催化剂。据称该催化剂是一种具有特殊表面积和孔体积的γ-A12O3,可长期保持活性,使用寿命达半年之久,转化率可达74.2%,选择性约99%。我国化工部西南化工研究院也曾进行过甲醇脱水制二甲醚的研究,考察了13x分子筛、氧化铝及ZSM-5催化剂的性能,当采用ZSM-5在200℃时,甲醇的转化率可达75%-85%,选择性大于98%。扩大试验于1992年3月通过鉴定。上海吴径化工厂以高硅铝比的硅酸盐粉状结晶作催化剂,在低温(130-200℃)、常压下实现了甲醇制DME的新工艺。在小试1000h工作的基础上进行了单管试验。甲醇单程转化率可达85%,选择性几乎100%,使用周期大于1000h。适当调整温度后,用粗甲醇(平均含量为78.4%)同样可获得80%的转化率。可见甲醇脱水制DME技术己经成熟,具备工业化的条件,可作为DME的生产方法。 2.1.2 合成气直接合成二甲醚 传统的DME生产方法,一直采用两个截然不同的步骤。即甲醇的合成与甲醇脱水。为了开发操作简单、成本低而又可连续生产DME的新方法,人们曾用合成气直接制取二甲醚。 主要反应构成如下: 4H2+2CO=2CH3OH 2CH3OH= CH3OCH3+ H2O CO+ H2O=CO2+H2 3H2+3CO = CH3OCH3+ CO2 该工艺实质上是把合成甲醇及甲醇脱水同步反应合并在一个反应器内,其关键是选择高活性及高选择性的双功能催化剂。一步法又分为二相法和三相法。国外自80年代后对此研究较多,较为典型的是丹麦托普索公司TIGAS工艺、日本三菱重工和COSMO石油公司联合开发的AMSTG工艺;国内大连化物所、华东理工大学、清华大学、山西煤化所等均在研究一步法生产工艺。目前国外己开发成功的有二种方法: (l) 托普索公司的固定床气相反应法,在反应器之间用冷却器取热,催化剂在高温下有高稳定性和高选择性; (2) 美国空气和化学品公司的液相淤浆床反应器(气、固、液三相合成)方法,有中试(10吨/天)及工业化示范装置(240吨/天);日本NKK公司的淤浆床反应器方法,于1999年建成一套5吨/天的中试装置。 国内山西煤化所开发的是三相浆态床一步法合成技术,已进行中试(规模100吨/年),于2001年8、9月份完成中试。大连化物所开发的是二相固定床一步合成二甲醚工艺(采用管壳反应器),已完成60吨/年的中试,并已在湖北田力实业公司建有1500吨/年的示范装置(具体运行情况尚需了解)。华东理工大学进行的是气、固、液三相一步法合成工艺研究,已完成小试,未进行中试,现希望与有关单位合作进行中试研究。清华大学进行的是三相淤浆床一步法合成反应器的研究,己完成小试,正筹备中试。南京大学主要研究二甲醚的反应机理,产品主要应用于冶金工业的添加剂、抗氧剂等。 据日本报道,采用Cu/Zn/Al催化剂,从合成气直接制取二甲醚,初始转化率和1000h后的转化率分别为65%和61%。中国科学院山西煤炭化学研究所的陶家林等对合成气制二甲醚的催化剂及反应条件进行了研究,用自制的双功能催化剂在275℃、2Mpa、1500mL/(g·h)、H2/CO=2、CO2=l%-2%的条件下,合成气中CO转化率可达75%,DME选择性>84%。兰- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年产 15 甲醇 合成 甲醚 工艺 大学本科 毕业论文
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文