毕业设计论文-液位检测显示控制系统设计.docx
《毕业设计论文-液位检测显示控制系统设计.docx》由会员分享,可在线阅读,更多相关《毕业设计论文-液位检测显示控制系统设计.docx(65页珍藏版)》请在咨信网上搜索。
ABSTRACT 毕业设计论文_液位检测显示控制系统设计 摘 要 水位测量在日常生活和工业领域有着广泛的应用,比如江河湖泊,地下水,水电站等都需要进行水位监测,以此来了解水位的工作情况以方便工作。水位监测系统目前在国里外都有广泛的应用。水位检测就是水位数据的采集、存储、传输、处理等技术的集成。水位检测的方法有很多种,如人工检测、传感器检测等等。本文介绍的是基于压力传感器实现的液位控制器的设计方法,该控制器以STC89C51单片机为核心,并辅以外围硬件电路来实现控制要求。本文首先介绍总体的设计方案,接着重点介绍各功能模块的作用及实现方法。最后,介绍proteus仿真软件。 关键词: 水位检测 单片机 控制 传感器 ABSTRACT Water level measurement in daily life and industrial fields have a wide range of applications, such as rivers, lakes, groundwater, hydropower, all these need water level monitoring , in order to understand the changes in the water level to facilitate the work. Water level monitoring system are widely used inside and outside currently. Level detection is the level of data collection, storage, transmission, processing and other technology integration. Level detection methods are many, such as artificial detection, sensor detection and so on. This article is based on a pressure sensor to achieve the level controller design method, the controller STC89C51 microcontroller as the core, supplemented by peripheral hardware circuit to achieve control requirements. This paper describes the overall design scheme, and then focuses on the role of various functional modules and implementation. Finally, proteus simulation software is introduced. Keywords: level detection single chip microcomputer control sensor 附录3 实物图 i 目 录 第一章 绪 论 3 1.1 液位自动检测的现状及发展趋势 3 1.2 课题背景及研究意义 3 1.3 方案规划 3 第二章 单片机最小系统设计 3 2.1 单片机最小系统的功能 3 2.2 51系列单片机 3 2.3 单片机最小系统的结构 3 2.3.1 时钟电路 3 2.3.2 复位电路 3 2.4 最小系统的电路设计 3 第三章 水位测量与显示模块的设计 3 3.1 传感器的介绍 3 3.2 0804模数转换器 3 3.3 LCD液晶显示模块电路设计 3 3.4 报警电路的设计 3 3.5 控制电路的设计 3 第四章 软件的设计 3 4.1 软件的整体结构设计 3 4.2 LCD液晶显示程序设计 3 4.2.1 LCD1602的基本操作时序 3 4.2.2 LCD1602的初始化过程 3 4.2.3 LCD1602的显示流程 3 4.2.4 液晶显示部分子函数源程序 3 4.3 4*1键盘程序设计 3 4.3.1 按键的消抖 3 4.3.2 按键部分源程序 3 4.4 ADC0804程序的设计 3 第五章 Proteus仿真软件介绍 3 5.1 仿真介绍 3 5.2 Proteus的ISIS介绍 3 5.3 利用Proteus绘制原理图 3 5.4 Keil与Proteus的联调仿真 3 第六章 总 结 3 致 谢 3 参考文献 3 附录1 电路图 3 附录2 程序 3 附录3 实物图 3 第一章 绪 论 1.1 液位自动检测的现状及发展趋势 在现代化的工业生产中,液位测量几乎遍及生产工厂的各个环节。在许多生产领域,不但对液位测量的精度要求高,还需要测量仪表很好的使用工业现场的特殊环境,例如高温、高压、强腐蚀性、强放射性的场合,以及远距离传送和在密闭压力容器内的使用等情况。工业自动检测技术是以物理学、电子学、自动控制、电子计算机、测量技术等原理为基础的一门综台性技术,其研究目的是对工业自动化系统中各种工艺参数进行自动检查与测量。作为一个工业自动化检测系统,其任务就是对生产设备和工艺过程参数进行计。对只有传感器、A/D转换和数字计算机的数据测量(处理)系统,存在着大量工艺参数和模拟量的转换问题,系统的精度很大程度上取决于检测装置的精度 近年来,随着计算机技术的不断完善以及高精度传感器的出现,给参数检测自动化带来了新的生机。 目前国内外在液位监测方面采用的技术和产品很多,传统的液位传感器按其采用的测量技术及使用方法分类已多达十余种。近年来国内外一些研制单位还在研制开发更新的传感监测技术。归纳起来主要有以下几种:差压式液位测量仪表、浮体式液位测量仪表、声波液位测量仪表、电窖式液位测量仪表、核辐射式液位测量仪表、直流电极式液位测量仪表、光纤液位测仪表、感应式数字水位测仪表。 近年来由于微电子技术的发展使得液位检测技术发生了根本性变化。新的检测原理与电子部件的应用使得液位测量仪更趋向小型化和微型化,特别是一些小型现场液位开关发展极快,如超声液位计和振动式液位开关,由于没有可动部件,所以可靠性高,不仅可现场显示,而且可以发出控制信号。与此同时,液位检测也在向着智能化发展,在液位测量领域内广泛应用微处理技术,以实现故障诊断和报警,目的是提高测量的精确度、可靠性、安全性和多功能化。在传感器方面,在应用和设计中尽量实现不接触式或不渗透式涮量,其中以超声波式液位计、光学式液位计、电磁式液位计与辐射式液位计最为典型,从而提高探头对恶劣的过程条件的抵抗能力。随着计算机应用的普及,直接输出数字信号的数字化液位传感器已成为这一领域仪表的发展趋势;随着纳米技术、生物工程技术的发展,纳米技术和生物技术在液位测量中的应用也将会日益增多 对于一些处于发展阶段的液位计在目前的应用中并不是十分普遍,但其低成本、高性能的吸引力给其发展带来光明的前景[1]。 1.2 课题背景及研究意义 不论社会经济如何飞速发展,水一直在人们正常生活和生产中起着重要的作用,一旦断了水,轻则给人们生活带来很大的不便,重则会造成严重的生产事故和重大损失,从而对供水系统提出了跟高的要求,必须满足及时、准确、安全、充足的供水,如果仍然采用人工供水的方式,则劳动强度大,工作效率低,安全性无法保证,因此必须进行自动化控制,从而实现提供充足的水量,平稳的水压。随着科学技术的发展,单片机作为嵌入式控制器在工业测控系统、智能仪器和家用电器得到广泛应用。再实时监测和自动控制的单片机应用系统中,单片机往往作为核心部件来使用。本文主要研究液压水位的测量与显示系统,以单片机为核心,讲述了单片机系统的选择、开发和设计,根据需要选择了成本低、技术成熟、可靠性高的51单片机系列;论述了压力传感器的选择、外围电路的设计以及相关软件的使用。 本次课程设计对我有以下意义: 1.通过这次课程设计,加深对片机理论方面的理解。 2.掌握单片机的内部模块的应用,如片内外存储器、A/D 转换器等。 3.了解和掌握单片机应用系统的软硬件设计过程、方法及实现,为以后设计和实现单片器应用系统打下良好基础。 4.通过简单课题的设计练习,了解必须提交的工程文件,也达到巩固、充实和综合运用所学知识解决实际问题的目的。 1.3 方案规划 基于单片机的数据采集系统是以单片机为核心的控制器件,结合外围电路所构成的,基本正常如图1.1所示。 输出通道 单片机 输入通道 图1.1 单片机数据采集系统结构图 采集系统硬件主要包括传感器、转换器、单片机、输入输出电路等。单片机作为控制单元的数据采集系统工作可以分为以下几个步骤[2]:数据采集是将被测量的信号转换为能被单片机识别的信号并输入给单片机;数据处理由单片机执行以测试为目的的算法程序后,得到与被测参数对应的测量值或形成相应的判断和决策。广泛的液位显示检测控制系统包括对水体的液位,压力等控制,本系统只侧重介绍液位的检测。液位检测是利用压力传感器,把液位的转台转换为模拟信号,再通过数模转换器ADC0804把输出信号直接接到单片机的I/O口,单片机经过运算控制,输出数字信号,输出接口接LCD和发光二级管,实现液位的显示和报警,如图1.2所示 报警电路 控制电路 液位显示 STC89C51 A/D转换器 D 压力信号 传感器 图1.2 水位显示测量控制系统总体结构图 由图1.2可知传感器对液面进行测量,然后输出模拟信号,再通过数模转换器把输入的模拟信号转换成输出数字信号,再通过已经存入80C51单片机内部的程序的运算控制,将叶面高度在LCD显示屏上表示出来,如果液位过高或者太低,则报警装置进行报警,提醒工作人员注意加水或排水。 第二章 单片机最小系统设计 2.1 单片机最小系统的功能 在日常生活及工业生产中单片机的应用越来越广泛,但单片机本身正常运行所需的资源基本是固定不变的,因此就需要开发单片机最小系统。单片机最小系统,或称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统。对51系列单片机来讲,最小系统一般包括:单片机、晶振电路、复位电路。一般将单片机最小系统最为应用系统的核心部分,通过对其存储器扩展、A/D扩展等,使单片机完成比较复杂的功能。 2.2 51系列单片机 8051系列单片机由于其生产成本低、功能强大、应用技术成熟等优点被广泛的应用于生产生活的各个方面。 8051系列单片机的基本结构如下[3]: 1.一个8位微处理器CPU 2.片内数据存储器RAM和特殊功能寄存器SFR 3.片内程序存储器ROM 4.两个定时/计数器T0、T1,可用作定时器,也可用以对外部脉冲进行计数 5.四个8位可编程的并行I/O端口,每个端口既可作输入,也可作输出 6.一个串行端口,用于数据的串行通信 7.中断控制系统 8.内部时钟电路 51单片机引脚及其功能如图2.1所示:: 图2.1 51单片机引脚图 P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子) P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子) P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子) P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子) 这4个I/O口具有不完全相同的功能。 P0口有三个功能: 1、外部扩展存储器时,当做数据总线。 2、外部扩展存储器时,当作地址总线。 3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。 P1口只做I/O口使用:其内部有上拉电阻。 P2口有两个功能: 1、扩展外部存储器时,当作地址总线使用 2、做一般I/O口使用,其内部有上拉电阻; P3口有两个功能: 除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器设置。 有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的, 即:编程脉冲:30脚(ALE/PROG) 编程电压(25V):31脚(EA/Vpp) 在介绍这四个I/O口时提到了“上拉电阻”,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。 PSEN 外部程序存储器读选通信号:在读外部ROM时PSEN低电平有效,以实现外部ROM单元的读操作。 1、内部ROM读取时,PSEN不动作; 2、外部ROM读取时,在每个机器周期会动作两次; 3、外部RAM读取时,两个PSEN脉冲被跳过不会输出; 4、外接ROM时,与ROM的OE脚相接。 ALE/PROG 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。PORG为编程脉冲的输入端。 EA/VPP 访问和序存储器控制信号: 1、接高电平时: CPU读取内部程序存储器(ROM) 扩展外部ROM:当读取内部程序存储器超过0FFFH(8051)1FFFH(8052)时自动读取外部ROM。 2、接低电平时:CPU读取外部程序存储器(ROM)。 在前面的学习中我们已知道,8031单片机内部是没有ROM的,那么在应用8031单片机时,这个脚是一直接低电平的。 3、8751烧写内部EPROM时,利用此脚输入21V的烧写电压。 XTAL1和XTAL2 外接晶振引脚。当使用芯片内部时钟时,此二引脚用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。 VCC:电源+5V输入 VSS:GND接地。 RST 复位信号:当输入的信号连续2个机器周期以上高电平时即为有效,用以完成单片机的复位初始化操作,当复位后程序计数器PC=0000H,即复位后将从程序存储器的0000H单元读取第一条指令码。 2.3 单片机最小系统的结构 51单片机的最小系统是以51单片机为核心,再辅以外部硬件电路,主要包括时钟电路、复位电路、扩展接口电路等部分,如图2,2所示: 51单片机系统 接口 时钟电路 复位电路 图2.2 单片机最小系统结构框图 2.3.1 时钟电路 时钟电路(如图2.3、2.4所示)就是振荡电路,向单片机提供一个正弦波信号作为基准,决定单片机的执行速度。 图中的电容C1和C2起稳定作用 图2.3 时钟电路 2.3.2 复位电路 单片机在启动时都需要复位以使CPU及系统各部件处于确定的初始状态并从初态开始工作。89系列单片机的复位信号是从RST引脚输入到芯片内的施密特触发器中的。当系统处于正常工作状态时且振荡器稳定后如果RST引脚上有一个高电平并维持2个机器周期(24个振荡周期)以上则CPU就可以响应并将系统复位。单片机系统的复位方式有手动按钮复位和上电复位。 在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。所以可以通过按键的断开和闭合在运行的系统中控制其复位。 在电路图中,电容的的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需10K*10UF=0.1S。也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。单片机系统自动复位[4]。 89c51 RST 图2.4 复位电路 2.4 最小系统的电路设计 对于51单片机来说,单片机+晶振电路+复位电路便组成了一个最小系统[5],本次设计采用的是STC89C51,属于51系列单片机。STC89C51单片机的最高工作时钟频率为80MHz,片内含8K Bytes的可反复擦写1000次的Flash只读程序存储器,器件兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,具有在系统可编程(ISP)特性。 使用的51单片机在+5V的直流条件下才能够稳定工作。单片机的接+5V的引脚为40引脚VCC,而接地的引脚为20引脚GND。供给单片机工作的+5V直流电源,必须是很稳定的,否则会导致单片机频频复位,这在单片机的正常工作中必须避免。,除非是有特定的需要。 图2.5 单片机最小系统电路图 总结: 复位电路的原理是单片机RST接收到2US以上的电平信号,只要保证电容充放实践大于2US,即可实现复位。 按复位键系统复位,其实质是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加造成的。 51单片机最小电路介绍: 51单片机最小系统的复位电路的极性电容C1的大小直接影响单片机的复位时间的长短,一般采用10—30uf,容值越大复位时间越短。 单片机最小系统的晶振Y1可以用6MNZ或11.0592MHZ,晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。 起振电容C2、C3一般采用15—33uf,电容离晶振越近越好,晶振离单片机越近越好。 P0口为开漏输出,作为输出口试需加上拉电阻,阻值一般为10K。 当晶振频率为12MHZ时,最高计数频率不应该超过0.5MHZ,即计数脉冲的周期要大于2ms。 第三章 水位测量与显示模块的设计 3.1 传感器的介绍 MPX4115系列压电电阻传感器是一个硅压力传感器,MPX4115传感器是整体片少带两级操作扩大电路和薄膜电阻网络提供高精度输出和温度补偿。 这个传感器结合了高级的微电机技术,薄膜镀金属,以及两级半导体处理精确度高,还能为高水准模拟输出信号提供一个均衡压力。在0℃-85℃的温度下误差不超过1.5%,温度补偿是-40℃-125℃[6]。 它的实物如图3.1所示: 图3.1 MPX4115实物图 压力传感器MPX4115的管脚说明如表3.1所示: 表3.1 MPX4115的管脚 压力传感器MPX4114的特性参数如表3.2所示: 表3.2 压力传感器MPX4114的特性参数 本系统中采用一个滑动变阻器代替压力传感器,用阻值的变化模拟水压的变化,根据不同的阻值LCD显示不同的液位高度值。 3.2 0804模数转换器 A/D转换就是将模拟信号转换成为数字信号,A/D转换器就是来实现这一功能的。ADC0804是用CMOS集成工艺制成的逐次比较型摸数转换芯片。分辨率8位,转换时间100μs,输入电压范围为0~5V,增加某些外部电路后,输入模拟电压可为5V。该芯片内有输出数据锁存器,当与计算机连接时,转换电路的输出可以直接连接在CPU数据总线上,无须附加逻辑接口电路[7]。ADC0804芯片引脚图如3.2所示。引脚名称及意义如下: 图3.2 ADC0804引脚图 AGND:模拟信号地。 DGND:数字信号地。 CLKIN:外电路提供时钟脉冲输入端。 VCC:电源端。 CLKR:内部时钟发生器外接电阻端,与CLKIN端配合可由芯片自身产生时钟脉冲,其频率为1/1.1RC。 CS:片选信号输入端,低电平有效,一旦CS有效,表明A/D转换器被选中,可启动工作。 WR:写信号输入,接受微机系统或其它数字系统控制芯片的启动输入端,低电平有效,当CS、WR同时为低电平时,启动转换。 RD:读信号输入,低电平有效,当CS、RD同时为低电平时,可读取转换输出数据。 INTR:转换结束输出信号,低电平有效。输出低电平表示本次转换已完成。该信号常作为向微机系统发出的中断请求信号。 VIN(+)、VIN(—):差动模拟电压输入。输入单端正电压时,VIN(—)接地;而差动输入时,直接加入VIN(+)、VIN(—)。 VREF:辅助参考电压。 DB0—DB7:8为数字输入端。 在使用时应注意以下几点: (1)转换时序 当CS与WR同时为低电平A/D转换器被启动切在WR上升沿后100模数完成转换,转换结果存入数据锁存器,同时,INTR自动变为低电平,表示本次转换已结束。如CS、RD同时来低电平,则数据锁存器三态门打开,数字信号送出,而在RD高电平到来后三态门处于高阻状态。 (2)零点和满刻度调节。 ADC0804的零点无须调整。满刻度调整时,先给输入端加入电压,使满刻度所对应的电压值是,其次是输入电压的最大值,是输入电压的最小值。当输入电压与值相当时,调整端电压值使输出码为FEH或FFH。 (3)参考电压的调节 在使用A/D转换器时,为保证其转换精度,要求输入电压满量程使用。如输入电压动态范围较小,则可调节参考电压,以保证小信号输入时ADC0804芯片8位的转换精度。 (4)接地 模数、数模转换电路中要特别注意到地线的正确连接,否则干扰很严重,以至影响转换结果的准确性。A/D、D/A及取样保持芯片上都提供了独立的模拟地(AGND)和数字地(DGND)的引脚。在线路设计中,必须将所有的器件的模拟地和数字地分别连接,然后将模拟地与数字地仅在一点上相连。 图3.3 ADC0804部分电路连接图 3.3 LCD液晶显示模块电路设计 在单片机的人机交流界面中,一般的输出有以下几种:发光管、LED数码管、液晶显示器。本设计采用的显示屏是LCD1602液晶显示屏,1602液晶也叫1602字符型液晶,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用1602LCD是指显示的内容为16X2,即可以显示两行,每行16个字符液晶模块(显示字符和数字)。 图3.4 LCD1602实物图 LCD1602各引脚的定义如下所示: LCD1602各引脚的定义如下所示: 引脚 符号 功能说明 1 VSS 一般接地 2 VDD 接电源(+5V) 3 V0 液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高(对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度)。 4 RS RS为寄存器选择,高电平1时选择数据寄存器、低电平0时选择指令寄存器。 5 R/W R/W为读写信号线,高电平(1)时进行读操作,低电平(0)时进行写操作。 6 E E(或EN)端为使能(enable)端,写操作时,下降沿使能。读操作时,E高电平有效 7 DB0 低4位三态、 双向数据总线 0位(最低位) 8 DB1 低4位三态、 双向数据总线 1位 9 DB2 低4位三态、 双向数据总线 2位 10 DB3 低4位三态、 双向数据总线 3位 11 DB4 高4位三态、 双向数据总线 4位 12 DB5 高4位三态、 双向数据总线 5位 13 DB6 高4位三态、 双向数据总线 6位 14 DB7 高4位三态、 双向数据总线 7位(最高位)(也是busy flag) 15 BLA 背光电源正极 16 BLK 背光 电源负极 在实际电路中将滑动变阻器与液晶显示屏连接来调节液晶显示屏的对比度以及液晶显示屏幕背光灯的亮度。 图3.5 LCD电路连接 3.4 报警电路的设计 本系统的报警电路使用两个红绿发光二级管作为报警灯[8],当水位达到上限时红色的发光二极管亮提醒注意排水,当水位达到下限时绿色的发光二极管亮提醒注意加水,报警电路的连接如图3.6所示。 图3.6 报警电路 当水高于或低于设定的最高和最低水位时,发光二级管导通,提醒工作人员注意。 3.5 控制电路的设计 通过电机的控制芯片试使电机与单片机连通,通过反馈信息来控制电机的转向,以实现水位高时排水,水位低时加水的控制,实现自动化管理。本文不涉及电机电路部分,故不对电机的控制芯片及其反馈作出介绍。 第四章 软件的设计 4.1 软件的整体结构设计 本系统包括液压的采集、LCD液晶显示、A/D转换、报警模块、控制模块等几部分。 在系统的硬件确定以后,功能完善的软件能够很好的指导和协调硬件的工作,可使系统发挥其最大的功效。一个完整的系统离不开对系统状态的监控。开机后,系统经过LCD初始化,显示启动界面;对系统进行初值的设定,设定最高水位和最小水位,当测量的水位高于最高水位或低于最低水位时,系统报警,同时控制系统加水或排水[9]。 图4.1 主程序流程序 4.2 LCD液晶显示程序设计 4.2.1 LCD1602的基本操作时序 1. 读操作顺序(如图4.2所示) 图4.2 读操作时序 2.写操作时序(如图4.3所示) 图4.3 写操作时序 3.LCD1602的指令说明及时序 1602液晶模块内部的控制器共有11条控制指令,如表4.1所示: 表4.1 LCD1602指令 序号 指令 RS R/W D7 D6 D5 D4 D3 D2 D1 D0 1 清显示 0 0 0 0 0 0 0 0 0 1 2 光标返回 0 0 0 0 0 0 0 0 1 * 3 置输入模式 0 0 0 0 0 0 0 1 I/D S 4 显示开/关控制 0 0 0 0 0 0 1 D C B 5 光标或字符移位 0 0 0 0 0 1 S/C R/L * * 6 置功能 0 0 0 0 1 DL N F * * 7 置字符发生存贮器地址 0 0 0 1 字符发生存贮器地址 8 置数据存贮器地址 0 0 1 显示数据存贮器地址 9 读忙标志或地址 0 1 BF 计数器地址 10 写数到CGRAM或DDRAM) 1 0 要写的数据内容 11 从CGRAM或DDRAM读数 1 1 读出的数据内容 1602液晶模块的读写操作、屏幕和光标的操作都是通过指令编程来实现的。(说明:1为高电平、0为低电平) 指令1:清显示,指令码01H,光标复位到地址00H位置。 指令2:光标复位,光标返回到地址00H。 指令3:光标和显示模式设置 I/D:光标移动方向,高电平右移,低电平左移 S:屏幕上所有文字是否左移或者右移。高电平表示有效,低电平则无效。 指令4:显示开关控制。 D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示 C:控制光标的开与关,高电平表示有光标,低电平表示无光标 B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。 指令5:光标或显示移位 S/C:高电平时移动显示的文字,低电平时移动光标。 指令6:功能设置命令 DL:高电平时为4位总线,低电平时为8位总线 N:低电平时为单行显示,高电平时双行显示 F: 低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。 指令7:字符发生器RAM地址设置。 指令8:DDRAM地址设置。 指令9:读忙信号和光标地址 BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。 指令10:写数据。 指令11:读数据。 1602LCD的一般初始化(复位)过程 延时15ms 写指令38H(不检测忙信号) 延时5ms 写指令38H(不检测忙信号) 延时5ms 写指令38H(不检测忙信号) 以后每次写指令、读/写数据操作均需要检测忙信号 写指令38H:显示模式设置 写指令08H:显示关闭 写指令01H:显示清屏 写指令06H:显示光标移动设置 写指令0CH:显示开及光标设置 4.2.2 LCD1602的初始化过程 图4.4 液晶初始化过程 4.2.3 LCD1602的显示流程 图4.5 显示程序流程图 4.2.4 液晶显示部分子函数源程序 1. 写指令到LCD函数 void write_com(uchar cmdcode) { chk_busy(); LCM_RS=0; LCM_RW=0; LCM_EN=1; Lcd_Bus=cmdcode; LCM_EN=0; } 2. 写数据到LCD函数 void write_data(uchar Dispdata) { chk_busy(); LCM_RS=1; LCM_RW=0; LCM_EN=1; Lcd_Bus=Dispdata; LCM_EN=0; } 3. 检查忙函数 void chk_busy() { LCM_RS=0; LCM_RW=1; LCM_EN=1; Lcd_Bus=0xff; While((Lcd_Bus&0x80)==0x80); LCM_EN=0; } 4. 初始化LCD屏函数 void lcm_init() { write_com(0x30); write_com(0x0c); lcm_clr(); write_com(0x60); lcm_clr2(); } 4.3 4*1键盘程序设计 4.3.1 按键的消抖 一般的按键是机械弹性开关,由于机械触点的弹性作用,按键闭合时不会立马接通,按键断开时也不会立马断开,在闭合和断开的瞬间会产生一些抖动,如果不消除按键的抖动,会导致单片机对按键的误判,从而产生误差。 利用按键稳定闭合的时间与按键的抖动时间较大的差别,可采用硬件或软件的方式进行消抖处理。本系统采用的是软件消抖。软件消抖的原理为[10]:当检测到按键闭合后执行一个5ms---10ms的延时程序,即避开按键前沿抖动部分,再一次检测按键状态,如仍为闭合,则确认按键被按下;同样的,当检测到按键被释放后,也执行一个5ms---10ms的延时程序,即避开按键前沿抖动部分,之后才能再一次进入读按键状态处理程序。 4.3.2 按键部分源程序 /*******键盘程序函数*********/ Void keyscan() { if(SET==0) { delay1(5); if(SET==0) { set_st++; if(set_st>1) { set_st=0; } } While(!SET); } if(set_st==0) { if(ADD==0) { delay1(5); if(ADD=0) { Shangxian++; If(shangxian>50)shangxian=50; } while(!ADD); show1(); } If(DEC==0) { delay1(5); If(DEC==0) Shangxian--; If(shangxian<xiaxian) Shangxian=xiaxian; while(!DEC); Show1(); } } If(set_st==1) { if(ADD==0) { Delay1(5); If(ADD==0) { Xiaxian++; If(xiaxian>shangxian)xiaxian=shangxian; } While(!ADD); Show2(); } If(DEC=0) { Delay1(5); If(DEC==0) { xiaxian--; If(xiaxian==-50) Xiaxian=-50; } While(!DEC); Show2(); } If(ENTER==0) { Set_st=2; Show1(); Show2(); } } 4.4 ADC0804程序的设计 ADC0804是属于连续渐进式(Successive Approximation Method)的A/D转换器,这类型的A/D转换器除了转换速度快(几十至几百us)、分辨率高价钱便宜的优点,普遍被应用于微电脑的接口设计上。 以输出8位的ADC0804动作来说明“连续渐进式A/D转换器”的转换原理,动作步骤如下表示(原则上先从左侧最高位寻找起)。 第一次寻找结果:10000000 (若假设值≤输入值,则寻找位=假设位=1) 第二次寻找结果:11000000 (若假设值≤输入值,则寻找位=假设位=1) 第三次寻找结果:11000000 (若假设值>输入值,则寻找位=该假设位=0) 第四次寻找结果:11010000 (若假设值≤输入值,则寻找位=假设位=1) 第五次寻找结果:11010000 (若假设值>输入值,则寻找位=该假设位=0) 第六次寻找结果:11010100 (若假设值≤输入值,则寻找位=假设位=1) 第七次寻找结果:11010110 (若假设值≤输入值,则寻找位=假设位=1) 第八次寻找结果:11010110 (若假设值>输入值,则寻找位=该假设位=0) 这样使用二分法的寻找方式,8位的A/D转换器只要8次寻找,12位的A/D转换器只要12次寻找,就能完成转换的动作,其中的输入值代表图1的模拟输入电压。 对8位ADC0804而言,它的输出准位共有28=256种,即它的分辨率是1/256,假设输入信号Vin为0~5V电压范围,则它最小输出电压是5V/256=0.01- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计 论文 检测 显示 控制系统 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文