水箱液压控制系统设计.doc
《水箱液压控制系统设计.doc》由会员分享,可在线阅读,更多相关《水箱液压控制系统设计.doc(37页珍藏版)》请在咨信网上搜索。
1、绪论 水是生命之源,在当代社会,节约用水是很重要的,厕所用水是我们生活用水重要的一部分,在现在我们一般的卫生间用水很不合理,只是机械的冲洗,不能控制其水量的大小。而且其水的压力往往不足,会造成冲洗不干净,给生活带来许多不便,在普通的冲洗系统中,用的都是自来水,生活上的其它水资源没有得到合理的利用。本设计针对上述生活中所遇到的问题,对原有的普通冲洗系统做了改进,使生活上其它已用过的废水得到充分的再利用,同时,根据实际情况,还设计了大小两档,便于实际情况的使用,既增大了压力,使得冲洗更干净,又节约了水资源,是符合我们日常生活需求的,具有巨大的市场前景,是把科学应用与生活的一典型。本设计利用了液压技术的优点,使用差动连接,实现工进和快速进给,以达到调节水量,压力的大小。使液压技术从工业延伸到了生活,是人们更清楚的了解液压,了解科学。 2、液压控制技术概述 2.1 液压技术的发展史 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫•布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。 第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。液压元件大约在 19 世纪末 20 世纪初的20年间,才开始进入正规的工业生产阶段。1925 年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动 的逐步建立奠定了基础。20 世纪初康斯坦丁•尼斯克(G•Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。 第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近 20 多年。在 1955 年前后 , 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20-30 年间,日本液压传动发展之快,居世界领先地位。 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 2.2 液压技术的应用及发展趋势 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。综合国内外专家的意见,其主要的发展趋势将集中在以下几个方面: 1. 减少能耗,充分利用能量 液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题: ①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 ②减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。 ③采用静压技术,新型密封材料,减少磨擦损失。 ④发展小型化、轻量化、复合化、广泛发展3通径、4通径电磁阀以及低功率电磁阀。 ⑤改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。 ⑥为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 2. 主动维护 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 3. 机电一体化 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下: (1)电液伺服比例技术的应用将不断扩大。液压系统将由过去的电气液压系统和开环比例控制系统转向闭环比例伺服系统,为适应上述发展,压力、流量、位置、温度、速度、加速度等传感器应实现标准化。计算机接口也应实现统一和兼容。 (2)发展和计算机直接接口的功耗为5mA以下电磁阀,以及用于脉宽调制系统的高频电磁阀(小于3mS)等。 (3)液压系统的流量、压力、温度、油的污染等数值将实现自动测量和诊断,由于计算机的价格降低,监控系统,包括集中监控和自动调节系统将得到发展。 (4)计算机仿真标准化,特别对高精度、“高级”系统更有此要求。 (5)由电子直接控制元件将得到广泛采用,如电子直接控制液压泵,采用通用化控制机构也是今后需要探讨的问题,液压产品机电一体化现状及发展。 液压行业: 液压元件将向高性能、高质量、高可靠性、系统成套方向发展;向低能耗、低噪声、振动、无泄漏以及污染控制、应用水基介质等适应环保要求方向发展;开发高集成化高功率密度、智能化、机电一体化以及轻小型微型液压元件;积极采用新工艺、新材料和电子、传感等高新技术。 液力偶合器向高速大功率和集成化的液力传动装置发展,开发水介质调速型液力偶合器和向汽车应用领域发展,开发液力减速器,提高产品可靠性和平均无故障工作时间;液力变矩器要开发大功率的产品,提高零部件的制造工艺技术,提高可靠性,推广计算机辅助技术,开发液力变矩器与动力换档变速箱配套使用技术;液粘调速离合器应提高产品质量,形成批量,向大功率和高转速方向发展。 气动行业: 产品向体积小、重量轻、功耗低、组合集成化方向发展,执行元件向种类多、结构紧凑、定位精度高方向发展;气动元件与电子技术相结合,向智能化方向发展;元件性能向高速、高频、高响应、高寿命、耐高温、耐高压方向发展,普遍采用无油润滑,应用新工艺、新技术、新材料。具体情况介绍如下: (1)采用的液压元件高压化,连续工作压力达到40Mpa,瞬间最高压力达到48Mpa; (2)调节和控制方式多样化; (3)进一步改善调节性能,提高动力传动系统的效率; (4)发展与机械、液力、电力传动组合的复合式调节传动装置; (5)发展具有节能、储能功能的高效系统; (6)进一步降低噪声; (7)应用液压螺纹插装阀技术,紧凑结构、减少漏油。液压与气动技术发展趋势。 液压系统简单来说是由两个大小不同的液缸组成的,在液缸里充满水或油。充水的叫“水压机”;充油的称“油压机”。两个液缸里各有一个可以滑动的活塞,如果在小活塞上加一定值的压力,根据帕斯卡定律,小活塞将这一压力通过液体的压强传递给大活塞,将大活塞顶上去。设小活塞的横截面积是S1,加在小活塞上的向下的压力是F1。于是,小活塞对液体的压强为P=F1/SI,即作用在小活塞的压力增大。 在液压传动中压力能够大小不变地被液体向各个方向传递。大活塞所受到的压强必然也等于P。若大活塞的横截面积是S2,压强P在大活塞上所产生的向上的压力F2=PxS2,截面积是小活塞横截面积的倍数。从上式知,在小活塞上加一较小的力,则在大活塞上会得到很大的力,为此用液压机来压制胶合板、榨油、提取重物、锻压钢材等。 虽然液压技术有很多优点,但是因为技术还不够完善,所以在实际应用中会有许多注意的事项,以下是应用中需注意的几个方面: (1)污染问题 液压元件失灵和失效的主要原因是液压油中有污染物。油液中的污染物有各种形态,并来自不同的根源。因此液压系统的污染控制要针对污染物的根源,对症下药地采取有力的措施。 (2)泄漏控制 液压系统中的油液,理应在液压元件的容腔或管路内流动或停留,而且不同的容腔往往有不同的压力。如果油液由于某中原因越过了边界,流到了它不该去的其它容腔或系统外部,这就是泄漏。从高压腔到低压腔的泄漏就是内泄漏,从元件或管路中到外部的泄漏是外泄漏。 (3)噪音控制 噪音是一种公害。工业企业或作业场所的噪音有一定的限制。液压系统的主要噪声源是液压泵,降低液压泵的噪声经过国内多年的努力,已经取得了显著的改善。 近年来液压技术又在太阳跟踪系统、海浪模拟装置、船舶驾驶模拟地震再现、火箭助飞发射装置、宇宙环境模拟和高层建筑防震系统及紧急刹车装置等设施中使用。 总之,几乎所有工程领域,凡是有机械设备的场合,均可利用液压技术。因此可见其发展前景是非常光明的。 3、水箱液压控制技术研究应用 3.1 液压元件及其作用分类 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为溢流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 液压动力元件: 液压动力元件(或称液压动力机构)是由液压放大元件(液压控制元件)和液压执行元件组成的。液压放大元件可以是液压控制阀,也可以是伺服变量泵。液压执行元件是液压缸或液压马达。由它们可以组成四种基本型式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸、泵控液压马达。前两种动力元件可以构成阀控(节流控制)系统,后两种动力元件可以构成泵控(容积控制)系统。 液压动力元件起着向系统提供动力源的作用,是系统不可缺少的核心元件。液压系统是以液压泵作为系统提供一定的流量和压力的动力元件,液压泵将原动机(电动机或内燃机)输出的机械能转换为工作液体的压力能,是一种能量转换装置,液压泵的工作原理及特点如下: 图3-1 液压泵工作原理图 液压泵都是依靠密封容积变化的原理来进行工作的,故一般称为容积式液压泵,图3-1所示的是一单柱塞液压泵的工作原理图,图中柱塞2装在缸体3中形成一个密封容积a,柱塞在弹簧4的作用下始终压紧在偏心轮1上。原动机驱动偏心轮1旋转使柱塞2作往复运动,使密封容积a的大小发生周期性的交替变化。当a有小变大时就形成部分真空,使油箱中油液在大气压作用下,经吸油管顶开单向阀6进入油箱a而实现吸油;反之,当a由大变小时,a腔中吸满的油液将顶开单向阀5流入系统而实现压油。这样液压泵就将原动机输入的机械能转换成液体的压力能,原动机驱动偏心轮不断旋转,液压泵就不断地吸油和压油。 单柱塞液压泵具有一切容积式液压泵的基本特点: (1)具有若干个密封且又可以周期性变化空间。液压泵输出流量与此空间的容积变化量和单位时间内的变化次数成正比,与其他因素无关。这是容积式液压泵的一个重要特性。 (2)油箱内液体的绝对压力必须恒等于或大于大气压力。这是容积式液压泵能够吸入油液的外部条件。因此,为保证液压泵正常吸油,油箱必须与大气相通,或采用密闭的充压油箱。 (3)具有相应的配流机构,将吸油腔和排液腔隔开,保证液压泵有规律地、连续地吸、排液体。液压泵的结构原理不同,其配油机构也不相同。如图3-1中的单向阀5、6就是配油机构。 容积式液压泵中的油腔处于吸油时称为压油腔。吸油腔的压力决定于吸油高度和吸油管路的阻力吸油高度过高或吸油管路阻力太大,会使吸油腔真空度过高而影响液压泵的自吸能力,压油腔的压力则取决于外负载和排油管路的压力损失,从理论上讲排油压力与液压泵的流量无关。 容积式液压泵排油的理论流量取决于液压泵的有关几何尺寸和转速,而与排油压力无关。但排油压力会影响泵的内泄露和油液的压缩量,从而影响泵的实际输出流量,所以液压泵的实际输出流量随排油压力的升高而降低。 液压泵按其在单位时间内所能输出的油液的体积是否可调节而分为定量泵和变量泵两类;按结构形式可分为齿轮式、叶片式和柱塞式三大类。 液压泵的主要性能参数: 1.压力 (1)工作压力。 液压泵实际工作时的输出压力称为工作压力。工作压力的大小取决于外负载的大小和排油管路上的压力损失,而与液压泵的流量无关。 (2)额定压力。 液压泵在正常工作条件下,按试验标准规定连续运转的最高压力称为液压泵的额定压力。 (3)最高允许压力。 在超过额定压力的条件下,根据试验标准规定,允许液压泵短暂运行的最高压力值,称为液压泵的最高允许压力。 2.排量和流量 (1)排量V。 液压泵每转一周,由其密封容积几何尺寸变化计算而得的排出液体的体积叫液压泵的排量。排量可调节的液压泵称为变量泵;排量为常数的液压泵则称为定量泵。 (2)理论流量qi。 理论流量是指在不考虑液压泵的泄漏流量的情况下,在单位时间内所排出的液体体积的平均值。显然,如果液压泵的排量为V,其主轴转速为n,则该液压泵的理论流量qi为: (3-1) (3)实际流量q。 液压泵在某一具体工况下,单位时间内所排出的液体体积称为实际流量,它等于理论流量qi减去泄漏流量Δq,即: (3-2) (4)额定流量qn。 液压泵在正常工作条件下,按试验标准规定(如在额定压力和额定转速下)必须保证的流量。 3.功率和效率 (1)液压泵的功率损失。 液压泵的功率损失有容积损失和机械损失两部分: ①容积损失。 容积损失是指液压泵流量上的损失,液压泵的实际输出流量总是小于其理论流量,其主要原因是由于液压泵内部高压腔的泄漏、油液的压缩以及在吸油过程中由于吸油阻力太大、油液粘度大以及液压泵转速高等原因而导致油液不能全部充满密封工作腔。液压泵的容积损失用容积效率来表示,它等于液压泵的实际输出流量q与其理论流量qi之比即: (3-3) 因此液压泵的实际输出流量q为 (3-4) 式中:V为液压泵的排量(m3/r);n为液压泵的转速(r/s)。 液压泵的容积效率随着液压泵工作压力的增大而减小,且随液压泵的结构类型不同而异,但恒小于1。 ②机械损失。 机械损失是指液压泵在转矩上的损失。液压泵的实际输入转矩T0总是大于理论上所需要的转矩Ti,其主要原因是由于液压泵体内相对运动部件之间因机械摩擦而引起的摩擦转矩损失以及液体的粘性而引起的摩擦损失。液压泵的机械损失用机械效率表示,它等于液压泵的理论转矩Ti与实际输入转矩T0之比,设转矩损失为ΔT,则液压泵的机械效率为: (2)液压泵的功率。 ①输入功率Pi。 液压泵的输入功率是指作用在液压泵主轴上的机械功率,当输入转矩为T0,角速度为ω时,有: (3-6) ②输出功率Po。 液压泵的输出功率是指液压泵在工作过程中的实际吸、压油口间的压差Δp和输出流量q的乘积,即: (3-7) 图3-2 液压泵的特性曲线 式中:Δp为液压泵吸、压油口之间的压力差(N/m2);q为液压泵的实际输出流量(m3/s);p为液压泵的输出功率(N·m/s或W)。 在实际的计算中,若油箱通大气,液压泵吸、压油的压力差往往用液压泵出口压力p代入。 (3)液压泵的总效率。 液压泵的总效率是指液压泵的实际输出功率与其输入功率的比值,即: (3-8) 其中Δpqi/ω为理论输入转矩Ti。 由式(3-8)可知,液压泵的总效率等于其容积效率与机械效率的乘积,所以液压泵的输入功率也可写成: (3-9) 液压泵的各个参数和压力之间的关系如图3-2所示。 齿轮泵: 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 齿轮泵的工作原理和结构: 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。实现吸油和压油。 图3-3 外啮合型齿轮泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙,小流量泵轴向间隙为0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 图3-4 CB—B齿轮泵的结构 齿轮泵存在的问题: 1. 齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图3-5(b)〕,封闭容积为最小,齿轮再继续转动时,封闭容积又逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。 图3-5齿轮泵的困油现象 为了消除困油现象,在CB—B型齿轮泵的泵盖上铣出两个困油卸荷凹槽,其几何关系如图3-6所示。卸荷槽的位置应该使困油腔由大变小时,能通过卸荷槽与压油腔相通,而当困油腔由小变大时,能通过另一卸荷槽与吸油腔相通。两卸荷槽之间的距离为a,必须保证在任何时候都不能使压油腔和吸油腔互通。 按上述对称开的卸荷槽,当困油封闭腔由大变至最小时(图3-6),由于油液不易从即将关闭的缝隙中挤出,故封闭油压仍将高于压油腔压力;齿轮继续转动,当封闭腔和吸油腔相通的瞬间,高压油又突然和吸油腔的低压油相接触,会引起冲击和噪声。于是CB—B型齿轮泵将卸荷槽的位置整个向吸油腔侧平移了一个距离。这时封闭腔只有在由小变至最大时才和压油腔断开,油压没有突变,封闭腔和吸油腔接通时,封闭腔不会出现真空也没有压力冲击,这样改进后,使齿轮泵的振动和噪声得到了进一步改善。 图3-6齿轮泵的困油卸荷槽图 图3-7齿轮泵的径向不平衡力 2. 径向不平衡力 齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用。如图3-7所示,泵的右侧为吸油腔,左侧为压油腔。在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的压力,就是齿轮和轴承受到的径向不平衡力。液压力越高,这个不平衡力就越大,其结果不仅加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形,造成齿顶和泵体内壁的摩擦等。为了解决径向力不平衡问题,在有些齿轮泵上,采用开压力平衡槽的办法来消除径向不平衡力,但这将使泄漏增大,容积效率降低等。CB—B型齿轮泵则采用缩小压油腔,以减少液压力对齿顶部分的作用面积来减小径向不平衡力,所以泵的压油口孔径比吸油口孔径要小。 齿轮泵的流量计算: 齿轮泵的排量V相当于一对齿轮所有齿谷容积之和,假如齿谷容积大致等于轮齿的体积,那么齿轮泵的排量等于一个齿轮的齿谷容积和轮齿容积体积的总和,即相当于以有效齿高(h=2m)和齿宽构成的平面所扫过的环形体积,即: (3-10) 式中:D为齿轮分度圆直径,D=mz(cm);h为有效齿高,h=2m(cm);B为齿轮宽(cm);m为齿轮模数(cm);z为齿数。 实际上齿谷的容积要比轮齿的体积稍大,故上式中的π常以3.33代替,则式(3-10)可写成: (3-11) 齿轮泵的流量q(1/min)为: (3-12) 式中:n为齿轮泵转速(rpm);ηv为齿轮泵的容积效率。 实际上齿轮泵的输油量是有脉动的,故式(3-12)所表示的是泵的平均输油量。 从上面公式可以看出流量和几个主要参数的关系为: (1)输油量与齿轮模数m的平方成正比。 (2)在泵的体积一定时,齿数少,模数就大,故输油量增加,但流量脉动大;齿数增加时,模数就小,输油量减少,流量脉动也小。用于机床上的低压齿轮泵,取z=13~19,而中高压齿轮泵,取z=6~14,齿数z<14时,要进行修正。 (3)输油量和齿宽B、转速n成正比。一般齿宽B=(6~10)m;转速n为750r/min:1000 r/min、1500r/min,转速过高,会造成吸油不足,转速过低,泵也不能正常工作。一般齿轮的最大圆周速度不应大于5~6m/s。 高压齿轮泵的特点: 上述齿轮泵由于泄漏大(主要是端面泄漏,约占总泄漏量的70%~80%),且存在径向不平衡力,故压力不易提高。高压齿轮泵主要是针对上述问题采取了一些措施,如尽量减小径向不平衡力和提高轴与轴承的刚度;对泄漏量最大处的端面间隙,采用了自动补偿装置等。下面对端面间隙的补偿装置作简单介绍。 1.浮动轴套式 图3-8(a)是浮动轴套式的间隙补偿装置。它利用泵的出口压力油,引入齿轮轴上的浮动轴套1的外侧A腔,在液体压力作用下,使轴套紧贴齿轮3的侧面,因而可以消除间隙并可补偿齿轮侧面和轴套间的磨损量。在泵起动时,靠弹簧4来产生预紧力, 保证了轴向间隙的密封。 图3-8端面间隙补偿装置示意图 2.浮动侧板式 浮动侧板式补偿装置的工作原理与浮动轴套式基本相似,它也是利用泵的出口压力油引到浮动侧板1的背面〔见图3-8(b)〕,使之紧贴于齿轮2的端面来补偿间隙。起动时,浮动侧板靠密封圈来产生预紧力。 3.挠性侧板式 图3-8(c)是挠性侧板式间隙补偿装置,它是利用泵的出口压力油引到侧板的背面后,靠侧板自身的变形来补偿端面间隙的,侧板的厚度较薄,内侧面要耐磨(如烧结有0.5~0.7mm的磷青铜),这种结构采取一定措施后,易使侧板外侧面的压力分布大体上和齿轮侧面的压力分布相适应。 内啮合齿轮泵: 内啮合齿轮泵的工作原理也是利用齿间密封容积的变化来实现吸油压油的。图3-9所示是内啮合齿轮泵的工作原理图。它是由配油盘(前、后盖)、外转子(从动轮)和偏心安置在泵体内的内转子(主动轮)等组成。内、外转子相差一齿,图中内转子为六齿,外转子为七齿,由于内外转子是多齿啮合,这就形成了若干密封容积。当内转子围绕中心O1旋转时,带动外转子绕外转子中心O2作同向旋转。这时,由内转子齿顶A1和外转子齿谷A2间形成的密封容积C(图中阴线部分),随着转子的转动密封容积就逐渐扩大,于是就形成局部真空,油液从配油窗口b被吸入密封腔,至A1′、A2′位置时封闭容积最大,这时吸油完毕。当转子继续旋转时,充满油液的密封容积便逐渐减小,油液受挤压,于是通过另一配油窗口a将油排出,至内转子的另一齿全部和外转子的齿凹A2全部啮合时,压油完毕,内转子每转一周,由内转子齿顶和外转子齿谷所构成的每个密封容积,完成吸、压油各一次,当内转子连续转动时,即完成了液压泵的吸排油工作。 内啮合齿轮泵的外转子齿形是圆弧,内转子齿形为短幅外摆线的等距线,故又称为内啮合摆线齿轮泵,也叫转子泵。 内啮合齿轮泵有许多优点,如结构紧凑,体积小,零件少,转速可高达10000r/mim,运动平稳,噪声低,容积效率较高等。缺点是流量脉动大,转子的制造工艺复杂等,目前已采用粉末冶金压制成型。随着工业技术的发展,摆线齿轮泵的应用将会愈来愈广泛,内啮合齿轮泵可正、反转,可作液压马达用。 图3-9所示是内啮合齿轮泵的工作原理图 液压控制阀: 液压控制阀是液压系统中用来控制液流方向、压力和流量的元件。借助于这些阀,便能对液压执行元件的启动和停止、运动方向和运动速度、动作顺序和克服负载的能力等进行调节与控制,使各类液压机械都能按要求协调地工作。液压控制阀可分为方向控制阀、压力控制阀和流量控制阀。按控制方式分类,液压控制阀可分为开关阀、电液比例控制阀、伺服阀和数字阀等。开关阀在调定后只能在调定状态下工作,它是液压系统中使用最为普遍的元件;电液比例控制阀的输出量与输入量之间保持一定的比例关系,它根据输入信号连续或按比例控制液压控制阀的参数,一般多用于开环液压控制系统;电液伺服阀一般情况是采用输入信号和反馈信号的偏差来连续地控制液压控制阀的输出参数,多用于要求精度高、响应快的闭环液压控制系统;电液数字阀则用数字信息直接控制液压阀的动作。按安装连接形式分: (1)管式连接阀 又称螺纹连接阀,液压控制阀的油口攻螺纹,用螺纹管接头连接管路。 (2)板式连接阀 如图4.1a,液压控制阀的各油口均布置在同一安装面上,并用螺钉固定在与阀有对应油口的连接板上,再用管接头和管道及其它元件连接;或者,把几个阀用螺钉固定在一个具有连接孔道的集成块的不同侧面上,沟通各阀组成回路。由于拆卸时无需拆卸与之相连的其它元件,故这种安装连接方式应用较广。 图3-10液压阀的连接方式 (3)叠加式连接阀 叠加式连接阀连接时,最下面一般为连接板,最上面液压阀的下表面,中间液压阀的上、下面为连接结合面,各油口分布在结合面上,同规格阀的油口连接尺寸相同,如图3-10b。每个阀除其自身的功能外,还起油路通道的作用,阀相互叠装便组成回路,无需管道连接,故结构紧凑,压力损失较小。 (4)插装式连接阀 这类阀无单独的阀体,由阀芯和阀套等组成的单元体插装在插装块体的预制孔中,用盖板和螺纹等固定,通过块体中的通道连接组成回路。它是近几年适应于液压系统集成化和大流量控制等要求而发展起来的一种新的安装连接方式。 液压控制阀的性能参数,阀的规格大小用通径 Dg(单位mm)表示。Dg是阀进、出油口的名义尺寸,它和实际尺寸不一定相等。 对于不同类型的各种阀,也有使用其它参数表征其工作性能的。一般有额定压力、流量,以及压力损失、开启压力、允许背压、最小稳定流量等。同时在产品样本中给出若干条特性曲线,供使用者确定不同状态下的性能参数值。 下面就系统设计中将要用到的单向阀,电磁换向阀作一定介绍,由于其他种类较多,这里就不一一作介绍。 1.普通单向阀 普通单向阀是只允许液流单方向流动而反向截止的元件。液压系统中对普通单向阀的要求主要是: ① 液流正向通过阀时压力损失小; ② 反向截止时密封性能好; ③ 动作如图3-10a和3-10b,分别是管式连接的直通式单向阀和板式连接的直角式单向阀。这里为了使看图方便,没有画出管式连接的螺纹和板式连接的密封圈安放槽等(以下同)。当液流从P1口流入时,作用在阀芯上的压力油液克服弹簧力顶开阀芯2,流向P2,实现正向导通;当液流从P2口流入时,由于阀芯上开有径向孔,液流流进阀芯内部,阀芯在液压力和弹簧力的作用下关闭阀口,实现反向截止。图3-11c为单向阀的图形符号。灵敏,工作时冲击和噪声小等。 1-阀体 2-阀芯 3-弹簧 4-阀盖 5-弹簧座 图3-11单向阀 从工作原理可知,单向阀的弹簧在保证克服阀芯和阀体的摩擦力及阀芯的惯性力而复位的情况下,弹簧的刚度应该尽可能地小,以免在液流流动时产生较大的能量损失。一般情况下,单向阀的开启压力为0.035~0.05MPa,通过额定流量时压力损失不应该超过0.1~0.3MPa。在液压系统中有时也将普通单向阀作为背压阀使用,这时一般要换上刚度较大的弹簧,此时单向阀的开启压力一般为 0.2~0.6MPa。 2.液控单向阀 除普通单向阀外,还有液控单向阀,它是液压系统经常使用的液压元件。如图3-11,液控单向阀由阀体2、阀芯5、弹簧6、控制活塞3、推杆4等组成。当液流从P1口流入时,液压力顶开阀芯,导通P1至 P2油路,实现正向导通;当液流从P2口流入时,液压油将阀芯5推压在阀座上,封闭油路,实现反向截止,这和普通单向阀的作用一样。当要求反向导通时,需在控制油口通以压力油,推动控制活塞3,通过推杆4将阀芯5顶离阀座,解除反向截止作用。 1、7-阀盖 2-阀体 3-控制活盖 4-推杆 5-阀芯 6-弹簧 a-内泄油孔 图3-12内泄式液控单向阀 液控单向阀按控制活塞背压腔的泄油方式不同,分为内泄式和外泄式。内泄式如图3-12,控制活塞的背压腔通过内泄油孔a连通单向阀的P1口;外泄式如图3-13,控制活塞的背压腔通过外泄油孔a直接通油箱。一般情况下在反向出油口的压力P1较低时采用内泄式,较高时采用外泄式,以减小所需控制压力。 图3-13外泄式液控单向阀图 3-14卸载式液控单向阀 液控单向阀按结构特点还可分为简式如图3-13和卸载式如图3-14两类。卸载式液控单向阀带有卸载阀,当控制活塞向右运动时首先顶开卸载阀的小阀芯,使主油路油压P2卸压,继续运动再顶开单向阀芯,反向导通油路。这样可大大减小控制压力,实际应用这种结构的液控单向阀可以使控制压力与工作压力之比降低到4.5%左右,常用于高压系统。 在工程实际中,常常需要对执行机构的进回油路同时采用液控单向阀进行锁紧控制,保证系统的安全等 。如图3-15,两个液控单向阀共用一个阀体和控制活塞,这样组合的结构称为液压锁。当从A1通入压力油时,在导通A1与A2油路的同时推动活塞右移,顶开右侧的单向阀,解除B2到B1的反向截止作用;当B1通入压力油时,在导通B1与B2油路的同时推动活塞左移,顶开左侧的单向阀,解除A2到A1的反向截止作用;而当A1与B1口没有压力油作用时,两个液控单向阀都为关闭状态,锁紧油路。液压锁的图形符号如图3-15b。 图3-15 液压锁 1-阀体 2-阀芯 3-液压缸 图3-16换向阀的原理 换向阀: 换向阀是借助于阀芯与阀体之间的相对运动,控制与阀体相连的各油路实现通、断或改变液流方向的元件。对换向阀的基本要求是: ① 液流通过阀时压力损失小; ② 互不相通的油口间的泄漏小; ③ 换向可靠、迅速且平稳无冲击。图3-16为滑阀式三位五通换向阀的工作 原理。液压阀由阀体和阀芯组成。阀体的内孔开有五个沉割槽,对应外接5个油口,称为五通阀。阀芯上有三个台肩与阀体内孔配合。在液压系统中,一般情况设P、T(T1、T2)为压力油口和回油口;A、B为接负载的工作油口(下同)。在图示位置(中间位置),各油口互不相通;若使阀芯右移一段距离,则P、A相通,B、T2相通,液压缸活塞右移;若使阀芯左移,则P、B相通,A、T1相通,液压缸活塞左移。 表3-17 换向阀的结构原理及图形符号列出了常用的几种中位机能的名称、结构原理、图形符号和中位特点。从表中可以看出,不同的中位机能具有各自特点。因为液压阀是连接动力元件和执行元件的,就是说一般情况下,换向阀的入口接液压泵,出口接液压马达或液压缸。 表3-17三位四通换向阀的中位机能举例 中位型式 结 构 原 理 图 符 号 中位特点 O 液压阀从其它位置转换到中位时,执行元件立即停止,换向位置精度高,但液压冲击大;液压执行元件停止工作后,油液被封闭在阀后的管路及元件中,重新启动时较平稳;在中位时液压泵不能卸荷。 H 换向平稳,液压缸冲出- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水箱 液压 控制系统 设计
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文