同余法解题.doc
《同余法解题.doc》由会员分享,可在线阅读,更多相关《同余法解题.doc(6页珍藏版)》请在咨信网上搜索。
1、(完整word)同余法解题五年级奥数培训资料第六讲 同余法解题 一、 同余这个概念最初是由德国数学家高斯发明的。同余的定义是这样的: 两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。记作ab(mod.m)。读作:a同余于b模m。 同余的性质也比较多,主要有以下一些:1.对于同一个除数,两个数的乘积与它们余数的乘积同余。例如20195的乘积对于除数7,与2017的余数5和957的余数4的乘积20对于7同余。2.对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。例如519和399对于一个除数同余,那么这个除数一定是519与399的差的因
2、数,即519与399的差一 定能被这个除数整除。3.。对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。 例如20和29对于一个除数同余,那么20的任何次方都和29的相同次方对于这个除数同余,当然余数大小随次方变化。4对于同一个除数,若三个数ab(mod m),bc(mod m),那么a,b,c三个数对于除数m都同余 (传递性)例如60和76同余于模8,76和204同余于模8,那么60,76,204都同余于模8.5。 对于同一个除数, 若四个数ab(mod m),cd(mod m),那么accd(mod m),(可加减性)6。 对于同一个除数, 若四个数ab(mod m),cd(mod
3、m),那么accd(mod m),(可乘性)二、中国剩余定理解法一个数被3除余1,被4除余2,被5除余4,这个数最小是几?解法:求3个数:第一个:能同时被3和4整除,但除以5余4,即12X224第二个:能同时被4和5整除,但除以3余1,即20X240第三个:能同时被3和5整除,但除以4余2,即15x230这3个数的最小公倍数为60,所以满足条件的最小数字为2440+30-60=3412X224 20X240 15x230中2的来历.三、解题技巧同余口诀:“差同减差,和同加和,余同取余,最小公倍n倍加”这是同余问题的口诀。1)、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时
4、反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。例:“一个数除以4余1,除以5余2,除以6余3,因为4-1=5-2=63=3,所以取3,表示为603或者60n-32)、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”.例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。3)、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”.例:
5、“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。4)、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍n倍加”,也称为:“公倍数作周期. 三、例题解评例1:判定288和214对于模37是否同余思路点拨:可直接由定义判断.解:288214=74=372288214(mod 37)例2、 用412、133和257除以一个相同的自然数,所得的余数相同,这个自然数最大是几?【解析】假设这个自然数是a,因为412、133和257除以a所得的余数相同,所以a(412133),a(412257),a(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。