第五章留数定理习题及其解答.doc
《第五章留数定理习题及其解答.doc》由会员分享,可在线阅读,更多相关《第五章留数定理习题及其解答.doc(9页珍藏版)》请在咨信网上搜索。
第五章 留数定理习题及其解答 5.1设有,能否说为本性奇点?为什么? 答:这个级数由两部分组成:即。第一个级数当即时收敛,第二个级数当即时收敛。于是所给级数在环域内收敛(成立),且和函数。显然是的解析点。可见此级数并非在的去心领域内成立。故不能由其含无限多个负幂项断定的性质。 注: 此例说明,判断孤立奇点类型虽可从的Laurent展开式含有负幂项的情况入手,但切不可忘掉必须是在去心领域内的Laurent展式,否则与是什么性质的点没有关系。 5.2 设在全平面解析,证明:若为的可去奇点,则必有(常数);若为的级极点,则必为次多项式:;除此之外,在处的Taylor展式必有无限多项系数。 证: 因为在全平面解析,所以在邻域内Taylor展式为且。注意到这Taylor级数也是在去心邻域内的Taylor级数。 所以,当在的可去奇点<═>在去心邻域内Laurent展示无的正幂项,即。 故(常数); 当为的级极点在去心邻域内Laurent展示中只含有限个的正幂项,且最高正幂为次()。 即为次多项式; 除去上述两种情况, 为的本性奇点在去心邻域内Laurent展开式中含有无限多个正幂项, 因此在中,有无限多个项的系数不为0。 注 (1). 对本题的结论,一定要注意成立的条件为在全面解析,否则结论不成立。例:在内解析(与全平面解析仅差一个点!),且以为可去奇点,但又在内解析,且以=为一级极点,但它并不是一次多项式,也不可能与任何一次多项式等价(它以=0为本性奇点)。同样地, 在内解析,以为本性奇点,但它不是超越整函数,(它不是整函数); (2). 本题证明完全依赖于无穷远点性态的分类定义,同时注意,全平面解析的函数在邻域内Taylor展示的收敛半径R= +,从而此Taylor展示成立的区域恰是的去心领域,即同一展示对而言即是其去心领域内的Laurent展式。 5.3 证明:如果为解析函数的阶零点,则必为的阶零点。(>1) 证 因为在点解析,且为其阶零点。故在的邻域内Taylor展式为 其中 由Taylor级数在收敛圆内可逐项微分性质有 右端即为在内的Taylor展开式,由解析函数零点定义知,以为阶零点。 注 本证明仅用到解析函数零点定义及幂级数在收敛圆内可逐项求导的性质. 5.4 判断下列函数在无穷远点的性态 1) 2) 3) 4) 解 1) 因为在内解析,且所给形式即为它在该环域内的Laurent展式,所以为的一级极点(为一级极点). 2) 因为在内解析,且在此环域内有 即在的去心邻域里的Laurent展式中含有无限多个的正幂项,故为的本性奇点(0为二级极点)。 3) 因为 在处解析,以为本性奇点。 在中令,得。为的本性奇点,即为的本性奇点。 4) 令,得,即。 ∴ 为的零点,且 ∵ ∴ 为的一级极点。 且 ,故,为的非孤立奇点。 注 当为孤立奇点时,一般直接从函数在的去心邻域内的Laurent展示入手,判断其类型,但对3),因有一定的特性,故可利用这一特性进行判断。 5.5 .求出下列函数的奇点,并对孤立奇点指出类型。 1) 2) 3) 4) 5) 6) (答 1)0,均为本性奇点;2)0为一级极点,为本性奇点;3)0为一级极点,为本性奇点;4)为唯一奇点,且为本性奇点;5)0为非独立奇点,为一级极点,为可去奇点;6)0为可去奇点,为本性奇点)。 5.6 计算下列各函数在指定点的留数: 1) 2) ,在处。 解 1) 因为为的一级极点,故由留数计算规则有 对,由留数计算规则有 又 在扩充复平面内仅有孤立奇点,故留数和为0,于是可得 2) ,由留数定义,等于在处Taylor展式中项的系数。 有 ∴ 注意 于扩充复平面内仅有两个奇点,其留数和为0,故。 5.7 计算下列函数在处的留数 1) ;2) 在 解 1) 在扩充平面仅有两个奇点。注意在内Taylor展式中只有偶次项。 故 在内Laurent展式中无项,即。 且环域也是的去心邻域。故上述展式也是处的Laurent展式。 因此 2) , 为自然数。 由留数定义知,等于在内Lauernt展式中的系数。注意在该环域有 5.8 计算 【答案 5.9 .求下列函数在指定点的留数 1)在点。 2)在点。 3)在点。 (答:1)1;2)-1;3)0;) 5.10 计算函数的留数。 【解】 ∵ 为的一级极点,() ∴ 为求,注意为自然数,只要求在点邻域Taylor展式中的系数即可 ∵ ∴,故 又由于扩充复平面仅有奇点,故 5.11 计算下列积分 1) 2) 解 1)因为积分路径位于环域内,且围绕,简单、正向、闭,在该环域内解析,故可知所求积分为 其中为在环域内Lauernt展式项的系数。 因此时, (上述展式中无偶次幂项). 时, 时, (无偶次幂项). 时, 2) 同1)道理,但积分路径位于环域内,且围绕,简单、正向、闭,在此环域内解析。 所以 其中为在环域内Laurent展式中项系数。 因而 时, 时, 时, (展式中无偶次幂项) 5.12 计算下列积分(积分路径均为正向); 解 因为在内解析。路径位于该环域内,围绕,简单、正向、闭,故由留数定义有 这里为在内Laurent展式(即在内Taylor展式)的项系数,由幂级数乘法易求得:。 即 5.13计算积分 (积分方向为正方向) 解: 当时为的一级极点,故 当时,积分路径内围绕了的个一级极点 由留数定理有 因为 所以 5.14 计算定积分 解:被积式为的有理函数,故令,则,。代入原积分,得 则内包围的一个奇点,且为一级极点。 故,由留数定理有 5.15 计算定积分 解:,设。则为的有理函数,且分母次数为4,分子次数为0。且在实轴上无奇点,在上半平面的奇点为,均为一级极点。 ∴ 5.16计算定积分。 解:首先注意 。 则 故只要计算第二项的值即可:设的分母次数比分子次数高1,在实轴上无奇点,在上半平面有一个一级极点。 ∴ 由此 , 于是 注: 要注意是一实变量复值积分,且实部为奇函数,虚部为偶函数,按实部等于实部,虚部等于虚部得最后结果。 5.17 计算实积分 【答案 (1);(2)】 5.18 计算积分 【答案 】 5.19 计算积分的值 【答案 】 5.20 计算积分的值 【答案】 5.21若函数 解析,且,试求. 【答案 】 5.22 利用复变函数环路积分方法,证明级数 (提示:考虑函数 沿着仅包围某一个奇点的环路的积分) 计算机仿真编程实践 5.23 计算机仿真计算(利用Matlab计算机求解出留数,然后求积分) 5.24 计算机仿真计算 (1)在0点 (2)在0点处的留数。 (答案(1)1; (2)) 5.25 利用计算机仿真编程的方法计算积分 (积分方向为正方向) 为自然数). 5.26 利用计算机仿真计算积分 ,并验证典型实例结果。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 章留数 定理 习题 及其 解答
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文