流水行船问题的公式和例题.doc
《流水行船问题的公式和例题.doc》由会员分享,可在线阅读,更多相关《流水行船问题的公式和例题.doc(5页珍藏版)》请在咨信网上搜索。
(完整word)流水行船问题的公式和例题(完整版) 流水行船问题的公式和例题 流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。 流水问题有如下两个基本公式: 顺水速度=船速+水速 (1) 逆水速度=船速-水速 (2) 这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程. 公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和.这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。 公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差. 根据加减互为逆运算的原理,由公式(1)可得: 水速=顺水速度-船速 (3) 船速=顺水速度-水速 (4) 由公式(2)可得: 水速=船速-逆水速度 (5) 船速=逆水速度+水速 (6) 这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个. 另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知: 船速=(顺水速度+逆水速度)÷2 (7) 水速=(顺水速度-逆水速度)÷2 (8) *例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度) 解:此船的顺水速度是: 25÷5=5(千米/小时) 因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度—水速”。 5—1=4(千米/小时) 综合算式: 25÷5-1=4(千米/小时) 答:此船在静水中每小时行4千米。 *例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度) 解:此船在逆水中的速度是: 12÷4=3(千米/小时) 因为逆水速度=船速—水速,所以水速=船速-逆水速度,即: 4-3=1(千米/小时) 答:水流速度是每小时1千米。 *例3 一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度) 解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是: (20+12)÷2=16(千米/小时) 因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是: (20-12)÷2=4(千米/小时) 答略. *例4 某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度) 解:此船逆水航行的速度是: 18-2=16(千米/小时) 甲乙两地的路程是: 16×15=240(千米) 此船顺水航行的速度是: 18+2=20(千米/小时) 此船从乙地回到甲地需要的时间是: 240÷20=12(小时) 答略。 *例5 某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米.此船从乙港返回甲港需要多少小时?(适于高年级程度) 解:此船顺水的速度是: 15+3=18(千米/小时) 甲乙两港之间的路程是: 18×8=144(千米) 此船逆水航行的速度是: 15-3=12(千米/小时) 此船从乙港返回甲港需要的时间是: 144÷12=12(小时) 综合算式: (15+3)×8÷(15—3) =144÷12 =12(小时) 答略。 *例6 甲、乙两个码头相距144千米,一艘汽艇在静水中每小时行20千米,水流速度是每小时4千米。求由甲码头到乙码头顺水而行需要几小时,由乙码头到甲码头逆水而行需要多少小时?(适于高年级程度) 解:顺水而行的时间是: 144÷(20+4)=6(小时) 逆水而行的时间是: 144÷(20-4)=9(小时) 答略。 *例7 一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。一只船在河中间顺流而下,6。5小时行驶260千米。求这只船沿岸边返回原地需要多少小时?(适于高年级程度) 解:此船顺流而下的速度是: 260÷6.5=40(千米/小时) 此船在静水中的速度是: 40-8=32(千米/小时) 此船沿岸边逆水而行的速度是: 32—6=26(千米/小时) 此船沿岸边返回原地需要的时间是: 260÷26=10(小时) 综合算式: 260÷(260÷6。5—8—6) =260÷(40—8-6) =260÷26 =10(小时) 答略。 *例8 一只船在水流速度是2500米/小时的水中航行,逆水行120千米用24小时.顺水行150千米需要多少小时?(适于高年级程度) 解:此船逆水航行的速度是: 120000÷24=5000(米/小时) 此船在静水中航行的速度是: 5000+2500=7500(米/小时) 此船顺水航行的速度是: 7500+2500=10000(米/小时) 顺水航行150千米需要的时间是: 150000÷10000=15(小时) 综合算式: 150000÷(120000÷24+2500×2) =150000÷(5000+5000) =150000÷10000 =15(小时) 答略。 *例9 一只轮船在208千米长的水路中航行.顺水用8小时,逆水用13小时.求船在静水中的速度及水流的速度.(适于高年级程度) 解:此船顺水航行的速度是: 208÷8=26(千米/小时) 此船逆水航行的速度是: 208÷13=16(千米/小时) 由公式船速=(顺水速度+逆水速度)÷2,可求出此船在静水中的速度是: (26+16)÷2=21(千米/小时) 由公式水速=(顺水速度-逆水速度)÷2,可求出水流的速度是: (26—16)÷2=5(千米/小时) 答略. *例10 A、B两个码头相距180千米。甲船逆水行全程用18小时,乙船逆水行全程用15小时。甲船顺水行全程用10小时。乙船顺水行全程用几小时?(适于高年级程度) 解:甲船逆水航行的速度是: 180÷18=10(千米/小时) 甲船顺水航行的速度是: 180÷10=18(千米/小时) 根据水速=(顺水速度—逆水速度)÷2,求出水流速度: (18-10)÷2=4(千米/小时) 乙船逆水航行的速度是: 180÷15=12(千米/小时) 乙船顺水航行的速度是: 12+4×2=20(千米/小时) 乙船顺水行全程要用的时间是: 180÷20=9(小时) 综合算式: 180÷[180÷15+(180÷10—180÷18)÷2×3] =180÷[12+(18—10)÷2×2] =180÷[12+8] =180÷20 =9(小时) 1、一只油轮,逆流而行,每小时行12千米,7小时可以到达乙港.从乙港返航需要6小时,求船在静水中的速度和水流速度? 分析:逆流而行每小时行12千米,7小时时到达乙港,可求出甲乙两港路程:12×7=84(千米),返航是顺水,要6小时,可求出顺水速度是:84÷6=14(千米),顺速-逆速=2个水速,可求出水流速度(14-12)÷2=1(千米),因而可求出船的静水速度。 解: (12×7÷6-12)÷2=2÷2=1(千米) 12+1=13(千米) 答:船在静水中的速度是每小时13千米,水流速度是每小时1千米。 2、某船在静水中的速度是每小时15千米,河水流速为每小时5千米。这只船在甲、乙两港之间往返一次,共用去6小时。求甲、乙两港之间的航程是多少千米? 分析: 1、知道船在静水中速度和水流速度,可求船逆水速度 15-5=10(千米),顺水速度15+5=20(千米). 2、甲、乙两港路程一定,往返的时间比与速度成反比。即速度比 是 10÷20=1:2,那么所用时间比为2:1 。 3、根据往返共用6小时,按比例分配可求往返各用的时间,逆水时间为 6÷(2+1)×2=4(小时),再根据速度乘以时间求出路程。 解: (15-5):(15+5)=1:2 6÷(2+1)×2=6÷3×2=4(小时) (15-5)×4=10×4=40(千米) 答:甲、乙两港之间的航程是40千米. 3、一只船从甲地开往乙地,逆水航行,每小时行24千米,到达乙地后,又从乙地返回甲地,比逆水航行提前2。 5小时到达.已知水流速度是每小时3千米,甲、乙两地间的距离是多少千米? 分析:逆水每小时行24千米,水速每小时3千米,那么顺水速度是每小时 24+3×2=30(千米),比逆水提前2. 5小时,若行逆水那么多时间,就可多行 30×2。 5=75(千米),因每小时多行3×2=6(千米),几小时才多行75千米,这就是逆水时间。 解: 24+3×2=30(千米) 24×[ 30×2。 5÷(3×2)]=24× [ 30×2。 5÷6 ]=24×12. 5=300(千米) 答:甲、乙两地间的距离是300千米。 4、一轮船在甲、乙两个码头之间航行,顺水航行要8小时行完全程,逆水航行要10小时行完全程。已知水流速度是每小时3千米,求甲、乙两码头之间的距离? 分析:顺水航行8小时,比逆水航行8小时可多行 6×8=48(千米),而这48千米正好是逆水(10-8)小时所行的路程,可求出逆水速度 4 8÷2=24 (千米),进而可求出距离。 解: 3×2×8÷(10-8)=3×2×8÷2=24(千米) 24×10=240(千米) 答:甲、乙两码头之间的距离是240千米。 解法二:设两码头的距离为“1”,顺水每小时行 ,逆水每小时行,顺水比逆水每小时快-,快6千米,对应。 3×2÷(-)=6÷=24 0(千米) 答:(略) 5、某河有相距12 0千米的上下两个码头,每天定时有甲、乙两艘同样速度的客船从上、下两个码头同时相对开出。这天,从甲船上落下一个漂浮物,此物顺水漂浮而下,5分钟后,与甲船相距2千米,预计乙船出发几小时后,可与漂浮物相遇? 分析:从甲船落下的漂浮物,顺水而下,速度是“水速”,甲顺水而下,速度是“船速+水速”,船每分钟与物相距:(船速+水速)-水速=船速。所以5分钟相距2千米是甲的船速5÷60=(小时),2÷=24(千米)。因为,乙船速与甲船速相等,乙船逆流而行,速度为24-水速,乙船与漂浮物相遇,求相遇时间,是相遇路程120千米,除以它们的速度和(24-水速)+水速=24(千米)。 解: 120÷[ 2÷(5÷60)]=120÷24=5(小时) 答:乙船出发5小时后,可与漂浮物相遇。 答略。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流水 行船 问题 公式 例题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文