-平稳时间序列预测法.ppt
《-平稳时间序列预测法.ppt》由会员分享,可在线阅读,更多相关《-平稳时间序列预测法.ppt(83页珍藏版)》请在咨信网上搜索。
1、7 7 平稳时间序列预测法平稳时间序列预测法7.1 概述概述7.2 时间序列的自相关分析时间序列的自相关分析7.3 单位根检验和协整检验单位根检验和协整检验7.4 ARMA模型的建模模型的建模.7.1 概概 述述时间序列取自某一个随机过程,则称:一、平稳时间序列一、平稳时间序列过程是平稳的过程是平稳的随机过程的随机特征不随时间变化而变化过程是非平稳的过程是非平稳的随机过程的随机特征随时间变化而变化.宽平稳时间序列的定义:宽平稳时间序列的定义:设时间序列,对于任意的t,k和m,满足:则称 宽平稳。严平稳时间序列的定义:严平稳时间序列的定义:所有的统计特性不随时间的平移而变化.qBox-Jenki
2、ns基本思想:用数学模型描述时间序列自身的相关性,并假定这种自相关性一直延续,用该模型预测未来的值。qARMA模型是描述平稳随机序列的最常用的一种模型。qBox-Jenkins方法提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。.ARMA模型的三种基本形式:q 自回归模型(AR:Auto-regressive);q 移动平均模型(MA:Moving-Average);q 混合模型(ARMA:Auto-regressiveMoving-Average)。.如果时间序列满足其中是独立同分布的随机变量序列,且满足:则称时间序列 服从p阶自回归模型。二、自回归模型二、自回
3、归模型.滞后算子多项式的根均在单位圆外,即的根大于1。自回归模型的平稳条件:自回归模型的平稳条件:.例例1 AR(1)模型的平稳性条件。模型的平稳性条件。对1阶自回归模型AR(1)方程两边平方再求数学期望,得到Xt的方差由于Xt仅与t相关,因此,E(Xt-1t)=0。如果该模型稳定,则有E(Xt2)=E(Xt-12),从而上式可变换为:在稳定条件下,该方差是一非负的常数,从而有|1。.而AR(1)的特征方程的根为 z=1/AR(1)稳定,即|1,意味着特征根大于1。对高阶自回模型对高阶自回模型AR(p)来说来说,多数情况下没有必要直接计算其特征方程的特征根,但有一些有一些有用的规则可用来检验高
4、阶自回归模型的稳定性用的规则可用来检验高阶自回归模型的稳定性:(1)AR(p)模型稳定的必要条件是模型稳定的必要条件是:1+2+p1 (2)(2)由于i(i=1,2,p)可正可负,AR(p)模型模型稳定的充分条件是:稳定的充分条件是:|1|+|2|+|p|p,t与t-k间的偏自相关系数偏自相关系数为零。.样本的偏自相关函数的计算样本的偏自相关函数的计算.其中:.1、时间序列的随随机机性性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则:q若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性;q若较多自相关函数落在置信区间之外,则认为
5、该时间序列不具有随机性。时间序列特性分析时间序列特性分析注:注:在B-J方法中,测定时间序列的随机性,多用于模型残差,以评价模型优劣。.2、判断时间序列是否平稳是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:q若时间序列的自相关函数在k3时都落入置 信区间 ,且逐渐趋于零,则该时间序列具有平稳性;q若时间序列的自相关函数更多地落在置信区间外面,则该时间序列不具有平稳性。.注:注:在B-J方法中,只有平稳的时间序列平稳的时间序列才能建立ARMA模型,否则必须经过适当的处理使序列满足平稳性要求。例对某种趋势的时间序列进行差分处理。但很多序列不能通过差分达到平稳,而且差分虽
6、然消除了序列的趋势易于建模,但也消除了序列的长期特征,实际的经济序列差分一般不超过两次。.3、时间序列的季节性季节性判定准则:q月度数据,考察k=12,24,36,时的自相关系数是否与0有显著差异;q季度数据,考察k=4,8,12,时的自相关系数是否与0有显著差异。注注1 1:实际问题中常遇到季节性和趋势性同时存在的情况,应先剔除序列趋势性,在识别季节性。注注2 2:包含季节性的时间序列也不能直接建模,应先进行季节差分消除,季节差分一般不超过一阶。.三、三、ARMA模型的自相关分析模型的自相关分析 qAR(p)模型的偏自相关函数是以p步截尾的,自相关函数拖尾;qMA(q)模型的自相关函数具有q
7、步截尾性,偏自相关函数拖尾;(可用以上两个性质来识别(可用以上两个性质来识别AR和和MA模型的阶数)模型的阶数)qARMA(p,q)模型的自相关函数和偏相关函数都 是拖尾的。.图图 ARMA(p,q)模型的模型的 ACF 与与 PACF理论模式理论模式 ACF PACF 模型模型1:tttXXe+=-17.00.00.20.40.60.812345678ACF10.00.20.40.60.812345678PACF1.7.4 ARMA模型的建模模型的建模 一、一、模型阶数的确定模型阶数的确定(1)基于自相关函数和偏相关函数的定阶方法基于自相关函数和偏相关函数的定阶方法 对于ARMA(p,q)模
8、型,可以利用其样本的自相关函数和样本偏自相关函数的截尾性判定模型的阶数。q如果样本的偏自相关函数是以p步截尾的,模型为AR(p);q如果样本的自相关函数具有q步截尾性,模型为MA(q);q如果样本的自相关函数和偏相关函数都是拖尾的,模型为ARMA(p,q)。.(1)自相关函数的截尾性统计检验:)自相关函数的截尾性统计检验:q对于每一个q,计算.(M 取为或者 ),对于MA(q)模型,当kq时,q q考察其中满足 的个数是否占M个的68.3%或者95.5%以上。.(2)偏自相关函数的截尾性统计检验:)偏自相关函数的截尾性统计检验:q对于每一个p,计算(M 取为或者 ),对于AR(p)模型,当kp
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平稳 时间 序列 预测
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。