2二次曲线上的四点共圆问题的完整结论.doc
《2二次曲线上的四点共圆问题的完整结论.doc》由会员分享,可在线阅读,更多相关《2二次曲线上的四点共圆问题的完整结论.doc(7页珍藏版)》请在咨信网上搜索。
1、二次曲线上的四点共圆问题的完整结论百年前,著名教材坐标几何(Loney著)中曾提到椭圆上四点共圆的一个必要条件是这四点的离心角之和为周角的整数倍(椭圆上任一点的坐标可以表示为R),角就叫做点的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写数学题解辞典(平面解析几何)时,仍未解决.到20世纪年代初编写中学数学范例点评时,才证明了此条件的充分性.2016年高考四川卷文科第20题,2011年高考全国大纲卷理科第21题,2005年高考湖北卷理科第21题(也即文科第22题)及2002年高考江苏、广东卷第20题都是关于二次曲线上四点共圆的问题(
2、见文献3,4).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧):若两条直线与二次曲线有四个交点,则这四个交点共圆的充要条件是.文献2还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”.文献5用较长的篇幅得出了下面的两个结论(即原文末的命题7、8):结论1 抛物线的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.结论2 圆锥曲线的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.请注意,文献5中所涉及的直线
3、的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4.定理1 若两条二次曲线有四个交点,则这四个交点共圆.证明 过这四个交点的二次曲线一定能表示成以下形式不同时为0): 式左边的展开式中不含的项,选时,再令式左边的展开式中含项的系数相等,得,此时曲线即 的形式,这种形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线上,所以曲线表示圆.这就证得了四个交点共圆.定理2 若两条直线与二次曲线有四个交点,则这四个交点共圆的充要条件是.证明 由组成的曲线即所以经过它与的四个交点的二次曲线一定能表示成以下形式不同时为0)
4、: 必要性.若四个交点共圆,则存在使方程表示圆,所以式左边的展开式中含项的系数.而(否则表示曲线,不表示圆),所以.充分性.当时,式左边的展开式中不含的项,选时,再令式左边的展开式中含项的系数相等,即,得.此时曲线即 的形式,这种形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线上,所以曲线表示圆.这就证得了四个交点共圆.推论1 若两条直线与二次曲线有四个交点,则这四个交点共圆的充要条件是这两条直线的斜率均不存在或这两条直线的斜率均存在且互为相反数.证明 设两条直线为,由定理2得,四个交点共圆的充要条件是.(1)当即时,得四个交点共圆的充要条件即也即或.(2)当与
5、不平行即时,由得,所以四个交点共圆的充要条件即也即直线的斜率均存在且均不为0且互为相反数.由此可得欲证成立.高考题1 (2016年高考四川卷文科第20题)已知椭圆:的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆上.(1)求椭圆的方程;(2)设不过原点且斜率为的直线与椭圆交于不同的两点,线段的中点为,直线与椭圆交于,证明:.解 (1)(过程略)椭圆的方程是.(2)设,线段的中点为.可得,把它们相减后分解因式(即点差法),再得所以,由推论1得四点共圆.再由相交弦定理,立得.竞赛题1 (2014年全国高中数学联赛湖北赛区预赛第13题)设A、B为双曲线上的两点,点N(1,2)为线段AB的中点
6、,线段AB的垂直平分线与双曲线交于C、D两点. (1)确定的取值范围;(2)试判断A、B、C、D四点是否共圆?并说明理由.简解 (1)用点差法可求得直线AB的方程是,由直线AB与双曲线交于不同的两点,可得且.得直线CD的方程是,由直线CD与双曲线交于不同的两点,可得且.所以的取值范围是.(2)在(1)的解答中已,所以由推论1立得四点共圆.笔者还发现还有一道竞赛题和四道高考题及均是二次曲线上的四点共圆问题,所以用以上定理的证法均可给出它们的简解.这五道题及其答案分别是: 高考题2 (2014年高考全国大纲卷理科第21题(即文科第22题)已知抛物线C:的焦点为,直线与y轴的交点为,与的交点为,且.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次曲线 四点 问题 完整 结论
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。