讲离散型随机变量的均值与方差.doc
《讲离散型随机变量的均值与方差.doc》由会员分享,可在线阅读,更多相关《讲离散型随机变量的均值与方差.doc(7页珍藏版)》请在咨信网上搜索。
1、(完整word)讲离散型随机变量的均值与方差第6讲离散型随机变量的均值与方差【2013年高考会这样考】1考查有限个值的离散型随机变量均值、方差的概念2利用离散型随机变量的均值、方差解决一些实际问题【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题基础梳理1离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn(1)均值称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平(2)方差称D(X)为随机变量X的方差,它刻
2、画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差2两点分布与二项分布的均值、方差(1)若X服从两点分布,则E(X)p,D(X)p(1p)(2)若XB(n,p),则E(X)np,D(X)np(1p) 两个防范在记忆D(aXb)a2D(X)时要注意:D(aXb)aD(X)b,D(aXb)aD(X)三种分布(1)若X服从两点分布,则E(X)p,D(X)p(1p);(2)XB(n,p),则E(X)np,D(X)np(1p);(3)若X服从超几何分布,则E(X)n.六条性质(1)E(C)C(C为常数)(2)E(aXb)aE(X)b(a、b为常数)(3)E(X1X2)EX1E
3、X2(4)如果X1,X2相互独立,则E(X1X2)E(X1)E(X2)(5)D(X)E(X2)(E(X))2(6)D(aXb)a2D(X)双基自测1(2010山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A。 B. C. D2解析由题意知a012351,解得,a1.s22.答案D2已知X的分布列为X101P设Y2X3,则E(Y)的值为()A。 B4 C1 D1解析E(X),E(Y)E(2X3)2E(X)33.答案A3(2010湖北)某射手射击所得环数的分布列如下:78910Px0。10。3y已知的期望E()8。9,则y的值为()A0.4 B0。6
4、 C0。7 D0.9解析x0.10。3y1,即xy0。6。又7x0.82.710y8。9,化简得7x10y5.4。由联立解得x0.2,y0.4。答案A4设随机变量XB(n,p),且E(X)1。6,D(X)1。28,则()An8,p0。2 Bn4,p0。4Cn5,p0.32 Dn7,p0.45解析XB(n,p),E(X)np1。6,D(X)np(1p)1.28,答案A5(2010上海)随机变量的概率分布列由下表给出:78910P0.30.350.20。15该随机变量的均值是_解析由分布列可知E()70。380.3590.2100.158。2.答案8。2考向一离散型随机变量的均值和方差【例1】A、
5、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1和B1A2和B2A3和B3现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y(1)求X,Y的分布列;(2)求E(X),E(Y)审题视点 首先理解X,Y的取值对应的事件的意义,再求X,Y取每个值的概率,列成分布列的形式,最后根据期望的定义求期望解(1)X,Y的可能取值分别为3,2,1,0.P(X3),P(X2),P(X1),P(X0);根据题意XY3,所以P(Y0)P(X3)
6、,P(Y1)P(X2),P(Y2)P(X1),P(Y3)P(X0).X的分布列为X0123PY的分布列为Y3210P(2)E(X)3210;因为XY3,所以E(Y)3E(X)。 (1)求离散型随机变量的期望关键是写出离散型随机变量的分布列,然后利用公式计算(2)由X的期望、方差求aXb的期望、方差是常考题之一,常根据期望和方差的性质求解【训练1】 (2011四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算)有甲、乙两人相互独立来该租车点租车骑游(各租一车一次)设甲、
7、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列及数学期望E()解(1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为,.记甲、乙两人所付的租车费用相同为事件A,则P(A).所以甲、乙两人所付的租车费用相同的概率为.(2)可能取的值有0,2,4,6,8。P(0);P(2);P(4);P(6);P(8)。甲、乙两人所付的租车费用之和的分布列为02468P所以E()02468.考向二均值与方差性质的应用【例2】设随机变量X具有分
8、布P(Xk),k1,2,3,4,5,求E(X2)2,D(2X1),。审题视点 利用期望与方差的性质求解解E(X)123453.E(X2)12232425211.D(X)(13)2(23)2(33)2(43)2(53)2(41014)2。E(X2)2E(X24X4)E(X2)4E(X)41112427。D(2X1)4D(X)8,. 若X是随机变量,则f(X)一般仍是随机变量,在求的期望和方差时,熟练应用期望和方差的性质,可以避免再求的分布列带来的繁琐运算【训练2】 袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n1,2,3,4)现从袋中任取一球,X表示所取球的标号(1)求X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 随机变量 均值 方差
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。