Matlab试验参考指导书.docx
《Matlab试验参考指导书.docx》由会员分享,可在线阅读,更多相关《Matlab试验参考指导书.docx(27页珍藏版)》请在咨信网上搜索。
试验一:Matlab操作环境熟悉 一、试验目标 1.初步了解Matlab操作环境。 2.学习使用图形函数计算器命令funtool及其环境。 二、试验内容 熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format命令调整命令窗口数据显示格式;学会使用变量和矩阵输入,并进行简单计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算: 1.单函数运算操作。 Ø 求下列函数符号导数 (1) y=sin(x); (2) y=(1+x)^3*(2-x); Ø 求下列函数符号积分 (1) y=cos(x); (2) y=1/(1+x^2); (3) y=1/sqrt(1-x^2); (4) y=(x-1)/(x+1)/(x+2); Ø 求反函数 (1) y=(x-1)/(2*x+3); (2) y=exp(x); (3) y=log(x+sqrt(1+x^2)); Ø 代数式化简 (1) (x+1)*(x-1)*(x-2)/(x-3)/(x-4); (2) sin(x)^2+cos(x)^2; (3) x+sin(x)+2*x-3*cos(x)+4*x*sin(x); 2.函数和参数运算操作。 Ø 从y=x^2经过参数选择去观察下列函数图形改变 (1) y1=(x+1)^2 (2) y2=(x+2)^2 (3) y3=2*x^2 (4) y4=x^2+2 (5) y5=x^4 (6) y6=x^2/2 3.两个函数之间操作 Ø 求和 (1) sin(x)+cos(x) (2) 1+x+x^2+x^3+x^4+x^5 Ø 乘积 (1) exp(-x)*sin(x) (2) sin(x)*x Ø 商 (1) sin(x)/cos(x); (2) x/(1+x^2); (3) 1/(x-1)/(x-2); Ø 求复合函数 (1) y=exp(u) u=sin(x) (2) y=sqrt(u) u=1+exp(x^2) (3) y=sin(u) u=asin(x) (4) y=sinh(u) u=-x 三、设计提醒 1.首次接触Matlab应该注意函数表示式文本式描述。 2.在使用图形函数计算器funtool时,注意观察1号和2号窗口中函数图形。 四、试验汇报要求 1.针对图形函数计算器funtool,对每一类型计算统计其中一个图形曲线。 2.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 试验二:M文件和Mat文件操作 一、试验目标 1.定制自己工作环境。 2.编写简单M文件。 3.保留内存工作区中变量到.mat文件。 4.学会只用Matlab帮助。 二、试验内容 1.使用format命令和File|Peferences菜单定制自己工作环境。 2.编写以下M文件,试调整参数a大小,观察并统计y1、y2波形特征。 %example1.m t=0:pi/100:4*pi; a=3; y2=exp(-t/a); y1=y2.*sin(a*t); plot(t,y1,'-r',t,y2,':b',t,-y2,':b'); 3.保留内存工作区变量a、t、y1、y2到example1.mat文件;关闭Matlab,再重新开启;观察内存工作区;重新依据.mat文件恢复原来工作区变量。 4.在命令窗口中查看exp函数帮助;运行helpwin查看超文本格式帮助文件,试翻译并统计下信号处理工具箱(Signal Processing Toolbox)中函数分类(Functions -- Categorical List)。 三、设计提醒 1.能够用命令语句、菜单或按钮等多个方法实施命令。 2.用于编辑M文件文本编辑器还能够实施和调试程序。 3.不一样工具箱可能包含同名函数,查看帮助时应注意在左侧栏选择对应工具箱类别。 四、试验汇报要求 1.对试验内容2,说明参数a大小对y1、y2波形特征影响。 2.翻译命令窗口中exp函数帮助信息。 3.运行helpwin,试翻译并统计下信号处理工具箱(Signal Processing Toolbox)中函数分类(Functions -- Categorical List)。 4.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 试验三:矩阵运算和元素群运算 一、试验目标 1.掌握数组和矩阵创建。 2.掌握矩阵运算和数组运算。 3.掌握基础元素群运算。 4.掌握向量和矩阵特殊处理。 二、试验内容 1.“:”号使用方法。用“:”号生成行向量a=[1 2 3 4 5 6 7 8 9 10]、b=[5 3 1 -1 -3 -5]; a=1:1:10 b=5:-2:-5 2.用线性等分命令linspace重新生成上述a和b向量。 a=linspace(1,10,10) b=linspace(5,-5,6) 3.在100和10000之间用对数等分命令logspace生成10维向量c。 C=logspace(2,4,10) 4.生成范围在[0,10]、均值为53×5维均匀分布随机数矩阵D。 D=10*rand(3,5) 5.利用magic函数生成5×5维魔方矩阵,取其对角向量e,并依据向量e生成一个对角矩阵E。(所谓魔方矩阵就是各行、各列、各对角线元素之和相等。) e=magic(5) E=diag(e) 6.另AA是3×3维魔方矩阵,BB是由A旋转180°得到。CC是一个复数矩阵,其实部为AA,虚部为BB。DD是CC转置,EE是CC共轭。分别计算CC和EE模和幅角。 aa=magic(3) bb=rot90(aa) bb=rot90(bb) cc=aa+bb*i dd=conj(cc)' ee=conj(cc) cc=abs(cc) ee=abs(ee) cc=angle(cc) ee=angle(ee) 7.f是一个首项为20,公比为0.510维等比数列;g是一个首项为1,公差为310维等差数列。试计算向量f和g内积s。 f=zeros(1,10); f(1)=20; for n=2:10; f(n)=f(n-1)*0.5; end g=zeros(1,10); g(1)=1; for m=2:10; g(m)=g(m-1)-3; end s=dot(f,g) 8.生成一个9×9维魔方矩阵,提取其中心3×3维子矩阵M,利用sum函数检验其各行和各列和是否相等。 a=magic(9) m=a(4:6,4:6) sum(a) sum(a') 9.已知,利用函数生成左上三角矩阵。 t=[1,2,3,4;2,3,4,5;3,4,5,6;4,5,6,7] t=flipud(t) t=tril(t) t=flipud(t) 三、设计提醒 1.等比数列可利用首项和公比元素群幂乘积生成。 2.提取子矩阵,可灵活应用“:”号或空阵[ ]。 3.尽可能用Matlab函数生成上述矩阵或向量,不要用手工逐一输入。 四、试验汇报要求 1.编写实现第二节试验内容中所使用函数命令,并统计对应生成结果。 2.思索题:是否存在2×2维魔方矩阵?。 3.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 试验四:线性方程组求解 一、试验目标 1.掌握恰定方程组解法。 2.了解欠定方程组、超定方程组解法。 3.掌握左除法求解线性方程组。 4.学会测试程序运行时间。 二、试验内容 1.用两种方法求下列方程组解,并比较两种方法实施时间。 左除法 a=[7,14,-9,-2,5;3,-15,-13,-6,-4; -11,-9,-2,5,7;5,7,14,16,-2;-2,5,12,-11,-4];b=[100,200,300,400,500]'; >> x=a\b 逆阵法 a=[7,14,-9,-2,5;3,-15,-13,-6,-4;-11,-9,-2,5,7;5,7,14,16,-2;-2,5,12,-11,-4]; >> b=[100,200,300,400,500]'; >> inv(a)*b 2.判定下列方程是恰定方程组、欠定方程组还是超定方程组,并求其解。 a=[6,9,14,-11,5;1,14,-7,-15,-6;-2,1,-7,12,-1;6,11,11,-9,-13]; b=[68,294,-441,103]'; x=a\b 3.用网孔电流法求以下电路各支路电流。 a=[4,-1,0;-2,6,4;0,-1,2]; b=[2,1,1]’; x=a\b 4.用结点电压法求以下电路结点电压un1、un2。 a=[3,-1;-9,11]; b=[0,0]’; x=a\b 三、设计提醒 1.在计算程序实施时间之前,应注意用clear命令将内存变量清空。 2.求得线性方程组解以后,代入原方程验证是否正确。 四、试验汇报要求 1.编写实现第二节试验内容中所使用函数命令,并统计对应生成结果。 2.对于电路求解,应列出对应网孔方程和结点方程,并注意方向。 3.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 试验五:函数编写和程序设计 一、试验目标 1.掌握函数编写规则。 2.掌握函数调用。 3.会用Matlab程序设计实现部分工程算法问题。 二、试验内容 1.编写一个[y,y1,y2]=mwave(f1,m1,f2,m2)函数,实现以下功效,并绘出y1、y2、y在t∈[0,2π]区间500个样点图形。(其中调用参数2 ≤ f1、f2 ≤ 20 Hz;0.5 ≤ m1、m2 ≤ 2) function [y,y1,y2]=mwave(f1,m1,f2,m2) % 依据给定频率和幅值计算标准正弦函数y1、y2及其叠加y波形。 if (f1<2)|(f1>20) error('f1超出范围!'), return, end if (f2<2)|(f1>20) error('f2超出范围!'), return, end if (m1<0.5)|(m1>2) error('m1超出范围!'), return, end if (m2<0.5)|(m2>2) error('m2超出范围!'), return, end % --------------------------------------------------- t=0:2*pi/(500-1):2*pi; y1=m1*sin(2*pi*f1*t); y2=m2*sin(2*pi*f2*t); y=y1+y2; figure subplot(311); plot(t,y1); title('y1波形'); subplot(312); plot(t,y2); title('y2波形'); subplot(313); plot(t,y); title('y=y1+y2波形'); % =================================================== 2.程序设计:相传古代印度国王要褒奖她聪慧能干宰相达依尔(国际象棋发明者),问她要什么?达依尔回复:“陛下只要在国际象棋棋盘第一个格子上放一粒麦子,第二个格子上放二粒麦子,以后每个格子麦子数全部按前一格两倍计算。假如陛下按此法给我64格麦子,就感激不尽,其它什么也不要了。”国王想:“这还不轻易!”让人扛了一袋麦子,但很快用光了,再扛出一袋还不够,请你为国王算一下共要给达依尔多少小麦?(1袋小麦约1.4×108粒)。 a=1; s=0 for i=1:64 s=s+a; a=2*a; end n=s/1.4/10^8 3.程序设计:公元前五世纪中国古代数学家张丘建在《算经》一书中提出了“百鸡问题”:鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一。百钱买百鸡,问鸡翁、母、雏各几何? for x=0:19 for y=0:33 for z=0:100 if (x+y+z==100)&(5*x+3*y+z/3==100) d=[x,y,z] end end end end 三、设计提醒 1.函数名和函数文件名应相同;对调用参数取值范围要检验是否符合要求,如不符合要求,应给出犯错信息(用if和error函数实现)。 2.程序设计——“百鸡问题”答案不唯一。提醒:设x:鸡翁数,则x范围:0~19;y:鸡母数,则y范围:0~33;z:鸡雏数,则z范围:0~100。 四、试验汇报要求 1.编写实现第二节试验内容(1)所使用函数文件。 2.程序设计用M文件编写,并统计实施结果。“百鸡问题”答案不唯一,要给出全部答案。 3.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 试验六:二维图形和三维图形创建 一、试验目标 1.掌握二维图形绘制。 2.掌握图形标注 3.了解三维曲线和曲面图形绘制。 二、试验内容 1.生成1×10维随机数向量a,分别用红、黄、蓝、绿色绘出其连线图、脉冲图、阶梯图和条形图,并分别标出标题“连线图”、“脉冲图”、“阶梯图”、“条形图”。 a=rand(1,10) subplot(221); plot(a,'r'); title('连线图'); subplot(222); stem(a,'y'); title('脉冲图'); subplot(223); stairs(a,'b'); title('阶梯图'); subplot(224); bar(a,'g'); title('条形图'); 2.在同一个图形窗口中,绘制两条曲线;并分别在靠近对应曲线处标注其函数表示式。 x=-5:0.1:5; y1=2.^x; y2=(1/2).^x; plot(x,y1,'r');text(2,10,'y1=2^x'); hold; plot(x,y2,'b');text(-3,10,'y2=(1/2)^x'); 3.编写一个mcircle(r)函数,调用该函数时,依据给定半径r,以原点为圆心画一个图所表示红色空心圆。(图例半径r=5) function [y,t]=mcircle(r) r=5 t=linspace(0,2*pi,65); y=ones(size(t)); subplot (121),polar(t,y,'*r') X=r*cos(t); Y=r*sin(t); subplot (122),plot(X,Y,'*r') axis equal axis square 4.(1)绘一个圆柱螺旋线(形似弹簧)图。圆柱截面直径为10,高度为5,每圈上升高度为1。如左图所表示。 (2)利用(1)结果,对程序做少许修改,得到如右图所表示图形。 t=0:pi/180:2*pi*5; r1=5; x1=r1*cos(t); y1=r1*sin(t); z=t/(2*pi); subplot(121),plot3(x1,y1,z); grid on r2=linspace(5,0,length(t)); x2=r2.*cos(t); y2=r2.*sin(t); subplot(122),plot3(x2,y2,z) grid on 三、设计提醒 1.Matlab许可在一个图形中画多条曲线:plot(x1,y1,x2,y2,……)指令绘制等多条曲线。Matlab自动给这些曲线以不一样颜色。标注可用text函数。 2.绘图时能够考虑极坐标和直角坐标转换。 3.三维曲线绘图函数为plot3。 四、试验汇报要求 1.编写实现第二节试验内容中所使用函数命令,并对二-2统计对应生成结果。 2.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 试验七:Matlab多项式和符号运算 一、试验目标 1.掌握Matlab多项式运算。 2.了解符号运算。 二、试验内容 1.将多项式化为x降幂排列。 A=[2,-3,7,-1] AA=poly(A) 即:P(x)=X^4+(-5)^3+(-19)^2+29x+42 2.求一元高次方程根。 P=[1,-5,-30,150,273,-1365,-820,4100,576,-1880]; R = roots(P) 3.求一元高次方程根,并画出左边多项式函数在区间内曲线。 P2=[1 0 -2 0 1]; x2=roots(P2) n=1; for x=-2:0.01:2 y(n)=sum(P2.*(x.^[(length(P2)-1):-1:0])); % 或 y(n)=x^4-2*x^2+1; n=n+1; end x=-2:0.01:2; plot(x,y) 4.求多项式和乘积;并求商和余式。 f1=[1 3 5 7];f2=[8 -6 4 -2]; f=conv(f1,f2) f11=[zeros(1,length(f)-length(f1)),f1] % 补0,和f同维 [q,r]=deconv(f-f11,f2) 5.求符号导数。 y='x^5+tan(4*x^2)+3'; diff(y) 6.用符号运算求试验内容4中表示式。 f1=sym('x^3+3*x^2+5*x+7'); f2=sym('8*x^3-6*x^2+4*x-2'); f=f1*f2 collect(f) (f-f1)/f2 collect(ans) 三、设计提醒 1.相关多项式运算函数有poly、roots等。 2.多项式做加减运算时要注意等长度。 3.符号表示式输入能够用字符串方法,也能够用sym函数。 四、试验汇报要求 1.编写实现第二节试验内容中所使用函数文件,并统计对应生成结果和图形。 2.对于多项式结果应以多项式向量和多项式表示式两种方法统计。 3.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 试验八:线性时不变系统时域响应 一、试验目标 1.掌握线性时不变系统三种描述形式——传输函数描述法、零极点增益描述法、状态空间描述法。 2.掌握三种描述形式之间转换。 3.掌握连续和离散系统频率响应求解。 二、试验内容(边做试验,边将生成结果和图形拷贝到Word文档中) 1.生成20个点单位脉冲信号、单位阶跃信号,并统计下函数命令和波形。 2.生成占空比为30%矩形波。Jnbbnn 3.将连续系统转化为传输函数形式,并显示其表示式。 4.将离散系统转化为零极点增益描述形式,并显示其表示式。 5.分别求试验内容3和4频率响应(对离散系统取256样点,采样频率取8000Hz)。 6.分别求试验内容3和4单位冲激响应(对离散系统,作60样点图)。 三、设计提醒 1.显示传输函数模型用tf(b,a);显示零极点增益模型用zpk(z,p,k)。注意:z、p为列向量。 2.连续系统频率响应用freqs函数;离散系统用freqz函数。 3.连续系统冲激响应用impulse函数;离散系统用impz函数。 四、试验汇报要求 1.编写实现第二节试验内容中所使用函数文件,并统计对应生成结果。 2.书写试验汇报时要结构合理,层次分明,在分析描述时候,需要注意语言流畅。 五、参考答案 第3题: k=0.5; z=[1,-3]'; p=[-1,-2,-4]'; sys_zpk=zpk(z,p,k) [b,a]=zp2tf(z,p,k); sys_tf=tf(b,a) 结果: Zero/pole/gain: 0.5 (s-1) (s+3) ----------------- (s+1) (s+2) (s+4) Transfer function: 0.5 s^2 + s - 1.5 ---------------------- s^3 + 7 s^2 + 14 s + 8 第4题: b=[3 5 2]; a=[1 -1.6 1.3 -.9 .5]; systf=tf(b,a,'variable','z^-1') [z,p,k]=tf2zp(b,a); syszpk=zpk(z,p,k,'variable','z^-1') 结果: Transfer function: 3 + 5 z^-1 + 2 z^-2 --------------------------------------------- 1 - 1.6 z^-1 + 1.3 z^-2 - 0.9 z^-3 + 0.5 z^-4 Sampling time: unspecified Zero/pole/gain: 3 z^-2 (1+z^-1) (1+0.6667z^-1) ------------------------------------------------------------- (1 - 1.685z^-1 + 0.8654z^-2) (1 + 0.08497z^-1 + 0.5778z^-2) Sampling time: unspecified 第5题: k=0.5; z=[1,-3]'; p=[-1,-2,-4]'; [b,a]=zp2tf(z,p,k); freqs(b,a) 结果: b=[3 5 2]; a=[1 -1.6 1.3 -.9 .5]; freqz(b,a,256,8000) % Fs=8000 结果: 第6题: k=0.5; z=[1,-3]'; p=[-1,-2,-4]'; sys3=zpk(z,p,k); impulse(sys3) 结果: b=[3 5 2]; a=[1 -1.6 1.3 -.9 .5]; impz(b,a,60)- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Matlab 试验 参考 指导书
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文