2019届苏教版圆锥曲线单元测试.doc
《2019届苏教版圆锥曲线单元测试.doc》由会员分享,可在线阅读,更多相关《2019届苏教版圆锥曲线单元测试.doc(18页珍藏版)》请在咨信网上搜索。
圆锥曲线 一、选择、填空题 1、(2018北京高考)已知椭圆,双曲线。若双曲线的两条渐近线与椭圆的四个交点及椭圆的两个焦点恰为一个正六边形的顶点,则椭圆的离心率为 ;双曲线的离心率为 。 2、(2017北京高考)若双曲线的离心率为,则实数m=______________ 3、(2016北京高考)双曲线(,)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则_______________. 4、(朝阳区2018届高三3月综合练习(一模))若三个点中恰有两个点在双曲线上,则双曲线的渐近线方程为_____________ 5、(东城区2018届高三5月综合练习(二模))已知双曲线C:-=1的一条渐近线的倾斜角为60º,且与椭圆+y2=1有相等的焦距,则C的方程为 (A)-y2=1 (B)-=1 (C)x2-=1 (D)-=1 6、(丰台区2018届高三5月综合练习(二模))已知双曲线的一条渐近线的倾斜角为,则的值为 (A) (B) (C) (D) 7、(海淀区2018届高三上学期期末考试)点到双曲线的渐近线的距离是______________ 8、(石景山区2018届高三3月统一测试(一模))双曲线的焦距是________,渐近线方程是________. 9、(西城区2018届高三4月统一测试(一模))已知抛物线的焦点与双曲线的一个焦点重合,则____;双曲线的渐近线方程是____. 10、(东城区2017届高三上学期期末))若点到双曲线的一条渐近线的距离为,则_______. 11、(朝阳区2017届高三上学期期末)已知双曲线的一条渐近线方程为,则等于 . 12、(西城区2017届高三上学期期末)已知双曲线的一个焦点是,则其渐近线的方程为 (A) (B) (C) (D) 13、(东城区2017届高三上学期期末)抛物线的准线方程是 (A) (B) (C) (D) 二、解答题 1、(2018北京高考)已知抛物线经过点.过点的直线与抛物线有两个 不同的交点,,且直线交轴于,直线交轴于. (1)求直线的斜率的取值范围; (2)设为原点,,,求证:为定值. 2、(2017北京高考)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点. (Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A为线段BM的中点. 3、(2016北京高考)已知椭圆C: ()的离心率为 ,,,,的面积为1. (1)求椭圆C的方程; (2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N. 求证:为定值. 4、(朝阳区2018届高三3月综合练习(一模))已知椭圆的离心率为,且过点. (Ⅰ)求椭圆的方程; (Ⅱ)过椭圆的左焦点的直线与椭圆交于两点,直线过坐标原点且与直线的斜率互为相反数.若直线与椭圆交于两点且均不与点重合,设直线与轴所成的锐角为,直线与轴所成的锐角为,判断与大小关系并加以证明. 5、(东城区2018届高三5月综合练习(二模))已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点. (I)求抛物线C的方程,并求其焦点坐标和准线方程; (II)若,求△AOB面积的最小值. 6、(丰台区2018届高三5月综合练习(二模))已知椭圆:的长轴长为,离心率为,过右焦点且不与坐标轴垂直的直线与椭圆相交于,两点,设点,记直线,的斜率分别为,. (Ⅰ)求椭圆的方程; (Ⅱ)若,求的值. 7、(海淀区2018届高三上学期期末考试)已知椭圆:,点. (Ⅰ)求椭圆的短轴长与离心率; (Ⅱ)过(1,0)的直线与椭圆相交于、两点,设的中点为, 判断与的大小,并证明你的结论. 8、(石景山区2018届高三3月统一测试(一模))在平面直角坐标系中,动点到定点的距离与它到直线的距离相等. (Ⅰ)求动点的轨迹的方程; (Ⅱ)设动直线与曲线相切于点,与直线相交于点. 证明:以为直径的圆恒过轴上某定点. 9、(西城区2018届高三4月统一测试(一模)) 已知圆和椭圆,是椭圆的左焦点. (Ⅰ)求椭圆的离心率和点的坐标; (Ⅱ)点在椭圆上,过作轴的垂线,交圆于点(不重合),是过点的圆的切线.圆的圆心为点,半径长为.试判断直线与圆的位置关系,并证明你的结论. 10、(石景山区2018届高三上学期期末考试)已知椭圆离心率等于,、是椭圆上的两点. (Ⅰ)求椭圆的方程; (Ⅱ)是椭圆上位于直线两侧的动点.当运动时,满足,试问直线的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由. 11、(丰台区2017届高三上学期期末)已知抛物线:的焦点为F,且经过点,过点的直线与抛物线交于,两点. (Ⅰ)求抛物线的方程; (Ⅱ)为坐标原点,直线,与直线分别交于,两点,试判断是否为定值?若是,求出这个定值;若不是,请说明理由. 12、(海淀区2017届高三上学期期末)已知是椭圆G:上的两点. (Ⅰ)求椭圆G的离心率; (Ⅱ)已知直线l过点,且与椭圆交于另一点(不同于点),若以为直径的圆经过点,求直线l的方程. 参考答案: 一、选择、填空题 1、, 2、2 3、2 4、 5、C 6、B 7、 8、, 9、, 10、 11、3 12、B 1 3、D 二、解答题 1、【解析】(1)由已知可得,所以抛物线的方程为. 令,, 直线显然不能与轴垂直,令其方程为, 带入整理得, 即. 所以由已知可得,解得且. 所以直线的斜率的取值范围为. (2)由(1)知,. 而点,均在抛物线上,所以,. 因为直线与直线与轴相交, 则直线与直线的斜率均存在,即,. 因为, 所以直线的方程为, 令,可得,即. 同理可得. 而由可得,,所以. 同理由可得,,所以. 所以 . 2、解:(Ⅰ)由抛物线C:过点P(1,1),得. 所以抛物线C的方程为. 抛物线C的焦点坐标为(,0),准线方程为. (Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为,. 由,得. 则,. 因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为. 直线ON的方程为,点B的坐标为. 因为 , 所以. 故A为线段BM的中点. 3、 试题分析:(1)根据离心率为,即,的面积为1,即,椭圆中列方程求解;(2)根据已知条件分别求出,的值,求其乘积为定值. . 当时,, 所以. 综上,为定值. 4、解:(Ⅰ)由题意得解得,,. 故椭圆的方程为. ….….5分 (Ⅱ). 证明如下: 由题意可设直线的方程为,直线的方程为,设点,,,. 要证,即证直线与直线的斜率之和为零,即 . 因为 . 由 得, 所以,. 由得,所以. 所以. . 所以. ….….14分 5、解:(I)由抛物线C:y2=2px经过点P(2,2)知,解得. 则抛物线C的方程为. 抛物线C的焦点坐标为,准线方程为.………………4分 (II)由题知,直线不与轴垂直,设直线:, 由消去,得. 设,则. 因为,所以,即, 解得(舍)或. 所以.解得. 所以直线:. 所以直线过定点. . 当且仅当或时,等号成立. 所以面积的最小值为4. ……………………………………13分 6、解:(Ⅰ)依题意得 ,所以 . …………………1分 因为 ,所以 . …………………2分 所以 . …………………3分 所以椭圆的方程为 . …………………4分 (Ⅱ)椭圆的右焦点 . …………………5分 设直线 :,设 ,. …………………6分 联立方程组 , 消得 ,成立. …………………8分 所以 ,. …………………9分 因为 , …………………10分 所以 ,即 ,…………11分 所以 恒成立. …………………12分 因为 ,所以 , 即 , …………………13分 化简为 , 所以 . …………………14分 7、解:(Ⅰ):,故,,, 有,. ……………..2分 椭圆的短轴长为, ……………..3分 离心率为. ……………..5分 (Ⅱ)方法1:结论是:. 当直线斜率不存在时,, ……………..7分 当直线斜率存在时,设直线:,, ,整理得: ……………..8分 故, ……………..9分 ……………..13分 故,即点在以为直径的圆内,故 (Ⅱ)方法2:结论是:. 当直线斜率不存在时,, ……………..7分 当直线斜率存在时,设直线:,,, ,整理得: ……………..8分 故, ……………..9分 , ……………..10分 ……………..11分 ……………..12分 此时, ……………..13分 故 8、(Ⅰ)解:设动点E的坐标为, 由抛物线定义知,动点E的轨迹是以为焦点,为准线的抛物线, 所以动点E的轨迹C的方程为. ……………5分 (Ⅱ)证明:由,消去得:. 因为直线l与抛物线相切,所以,即. ……8分 所以直线l的方程为. 令,得. 所以Q. ……………10分 设切点坐标,则, 解得:, ……………11分 设, 所以当,即 所以 所以以PQ为直径的圆恒过轴上定点. ……………13分 9、解:(Ⅰ)由题意,椭圆的标准方程为. [ 1分] 所以 ,,从而 . 因此 ,. 故椭圆的离心率 . [ 3分] 椭圆的左焦点的坐标为. [ 4分] (Ⅱ)直线与圆相切.证明如下: [ 5分] 设,其中,则, [ 6分] 依题意可设,则. [ 7分] 直线的方程为 , 整理为 . [ 9分] 所以圆的圆心到直线的距离 . [11分] 因为 . [13分] 所以 , 即 , 所以 直线与圆相切. [14分] 10、解:(Ⅰ)因为,又, 所以 ………2分 设椭圆方程为,代入,得 ……4分 椭圆方程为 …………5分 (Ⅱ)当时,斜率之和为 …………6分 设斜率为,则斜率为 …………7分 设方程为,与椭圆联立得 代入化简得: , 同理,, 即直线的斜率为定值. …………14分 11、解:(Ⅰ)把点代入抛物线的方程,得,解得, 所以抛物线的方程为. ……………….4分 (Ⅱ)因为,所以直线为,焦点的坐标为 设直线的方程为,,, 则直线的方程为,直线的方程为. ……………….5分 由得,同理得. ……………….7分 所以,,则. ……………….9分 由得,所以, ……………….11分 则. 所以,的值是定值,且定值为0. ……………….13分 12、解:(Ⅰ)由已知 由点在椭圆G上可得, 解得. 所以, 所以椭圆G的离心率是 (Ⅱ)法1: 因为以为直径的圆经过点,所以, 由斜率公式和可得, 所以, 设直线的方程为. 由得, 由题设条件可得, 所以, 所以直线的方程为. 法2:因为以为直径的圆经过点,所以, 由斜率公式和可得, 所以, 设 ,则,即① 由点C在椭圆上可得② 将①代入②得, 因为点不同于点,所以, 所以, 所以直线的方程为. 法3:当直线l过点且斜率不存在时,可得点,不满足条件. 设直线的方程为,点 由可得, 显然,此方程两个根是点的横坐标, 所以,即 所以 因为以为直径的圆经过点, 所以,即. (此处用亦可) , 即, 当时,即直线,与已知点不同于点矛盾, 所以 所以直线的方程为.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 届苏教版 圆锥曲线 单元测试
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文