平行线及其判定与性质练习题.doc
《平行线及其判定与性质练习题.doc》由会员分享,可在线阅读,更多相关《平行线及其判定与性质练习题.doc(5页珍藏版)》请在咨信网上搜索。
(完整word)平行线及其判定与性质练习题 l 平行线及其判定 1、基础知识 (1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______. (2)在同一平面内,两条直线的位置关系只有______、______. (3)平行公理是: 。 (4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______. (5)两条直线平行的条件(除平行线定义和平行公理推论外): ①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行. ②两条直线被第三条直线所截,如果__ _,那么 ,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为: 2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据. (1)如果∠2=∠3,那么____________。(____________,____________) (2)如果∠2=∠5,那么____________.(____________,____________) (3)如果∠2+∠1=180°,那么____________.(____________,____________) (4)如果∠5=∠3,那么____________.(____________,____________) (5)如果∠4+∠6=180°,那么____________.(____________,____________) (6)如果∠6=∠3,那么____________。(____________,____________) 3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由. (1)∵∠B=∠3(已知),∴______∥______。(______,______) (2)∵∠1=∠D(已知),∴______∥______.(______,______) (3)∵∠2=∠A(已知),∴______∥______.(______,______) (4)∵∠B+∠BCE=180°(已知),∴______∥______。(______,______) 4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点. 5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法) 6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由. (1)问题的结论:DF______AE. (2)证明思路分析:欲证DF______AE,只要证∠3=______. (3)证明过程: 证明:∵CD⊥DA,DA⊥AB,( ) ∴∠CDA=∠DAB=______°.(垂直定义) 又∠1=∠2,( ) 从而∠CDA-∠1=______-______,(等式的性质) 即∠3=______。 ∴DF______AE.(___________,___________) 7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC, ∴( ) 又∵BF、DE分别平分∠ABC与∠ADC, ∴( ) ∵∠______=∠______。( ) ∵∠1=∠3,( ) ∴∠2=______.( ) ∴______∥______.( ) 8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由. (1)问题的结论:a______c. (2)证明思路分析:欲证a______c,只要证______∥______. (3)证明过程: 证明:∵∠1=∠2,( ) ∴a∥______,(_________,_________)① ∵∠3+∠4=180° ∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______, ∴a______c.(_________,_________) 9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是( ) (A)1 (B)2 (C)3 (D)4 10、下列说法中,正确的是( ). (A)不相交的两条直线是平行线. (B)过一点有且只有一条直线与已知直线平行. (C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离. (D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直. 11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度. 图6 12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。 13、下列说法正确的是 ( ) (A)有且只有一条直线与已知直线垂直 (B)经过一点有且只有一条直线与已经直线垂直 (C)连结两点的线段叫做这两点间的距离 (D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离 14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是( ) A.a∥b B.b⊥d C.a⊥d D.b∥c 平行线的性质 1.基础知识 (1)平行线具有如下性质 ①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______. (2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由. (1)如果AB∥EF,那么∠2=______,理由是_____________________________________。 (2)如果AB∥DC,那么∠3=______,理由是____________________________________. (3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________. (4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________. 3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由. (1)∵DE∥AB,( ) ∴∠2=______。(___________________) (2)∵DE∥AB,( ) ∴∠3=______.(___________________) (3)∵DE∥AB( ), ∴∠1+______=180°.(____________________) 4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______。 解:∵∠1=∠2,( ) ∴______//______.(__________________) ∴∠4=_____=_____°。(__________________) 5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______。 证明:∵∠1+∠2=180°,( ) ∴______//______.(_________________) ∴∠3=∠4.(_________,_________) 6.已知:如图,∠A=∠C,求证:∠B=∠D. 证明思路分析:欲证∠B=∠D,只要证______//______。 证明:∵∠A=∠C,( ) ∴______//______.(_________,_________) ∴∠B=∠D.(_________,_________) 7.已知:如图,AB∥CD,∠1=∠B, 求证:CD是∠BCE的平分线. 证明思路分析:欲证CD是∠BCE的平分线, 只要证______//______. 证明:∵AB∥CD,( ) ∴∠2=______。(_________,_________) 但∠1=∠B,( ) ∴______=______.(等量代换)即CD是____ ________。 8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,( ) ∴∠2=∠______=______°(_________,_________) 而∠1=75°, ∴∠ACD=∠1+∠2=______。 ∵CD∥AB,( ) ∴∠A+______=180°.(_________,_________) ∴∠A=______=______. 9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,( ) ∴∠DCE=∠______=______°(_________,_________) 又∵AD∥BC,( ) ∴∠D=∠______=______°(_________,_________) 想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,( ) ∴∠A+∠B=______。(_________,_________) 即∠A=______—______=______°—______°=______。 ∵DC∥AB,( ) ∴∠D+∠A=______。(_________,_________) 即∠D=______—______=______°-______°=______。 10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,( ) ∴∠BAC+∠______=180°( ) ∵PM∥AB, ∴∠1=∠______,( ) 且PM∥______。(平行于同一直线的两直线也互相平行) ∴∠3=∠______。(两直线平行,内错角相等) ∵AP平分∠BAC,CP平分∠ACD,( ) ( ) ( ) ∴∠APC=∠2+∠3=∠1+∠4=90°( ) 总结:两直线平行时,同旁内角的角平分线______. 11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数. 12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明. (2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明. 13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由. 14.如下图,AB∥DE,那么∠BCD=( ). (A)∠2-∠1 (B)∠1+∠2 (C)180°+∠1-∠2 (D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______. (15题) (16题) 16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度. 17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度. 18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC. 19.如图,AB∥CD,FG⊥CD于N,∠EMB=a ,则∠EFG等于( ). (A)180°-a (B)90°+a (C)180°+a (D)270°-a 20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD. 21.以下五个条件中,能得到互相垂直关系的有( ). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线 (A)1个 (B)2个 (C)3个 (4)4个 22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ). (A)6个 (B)5个 (C)4个 (D)3个 23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ). (1)∠C′EF=32° (2)∠AEC=148° (3)∠BGE=64°(4)∠BFD=116° (A)1个 (B)2个 (C)3个 (D)4个 24.如图,AB∥CD,BC∥ED,则∠B+∠D=______. 25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________。 26. 如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______。 (24题) (25题) (26题) 27.已知:如图,AC∥BD,折线AMB夹在两条平行线间. 图1 图2 (1)判断∠M,∠A,∠B的关系; (2)请你尝试改变问题中的某些条件,探索相应的结论。 建议:①折线中折线段数量增加到n条(n=3,4……) ②可如图1,图2,或M点在平行线外侧. 28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明: 26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN. 27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH. 28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC. 29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB. 30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由. 31.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行线 及其 判定 性质 练习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文