异面直线间的距离全部方法详细例题.doc
《异面直线间的距离全部方法详细例题.doc》由会员分享,可在线阅读,更多相关《异面直线间的距离全部方法详细例题.doc(4页珍藏版)》请在咨信网上搜索。
(完整word)异面直线间的距离全部方法详细例题 异面直线间的距离 求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。 常用方法有: 1、 定义法 2、 垂直平面法(转化为线面距) 3、 转化为面面距 4、 代数求极值法 5、 公式法 6、 射影法 7、 向量法 8、 等积法 1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。 例1 已知:边长a为的两个正方形ABCD和CDEF成1200的二面角,求异面直线CD与AE间的距离。 思路分析:由四边形ABCD和CDEF是正方形,得 CD⊥AD,CD⊥DE,即CD⊥平面ADE,过D作DH⊥AE于H,可得DH⊥AE,DH⊥CD,所以DH是异面直线AE、CD的公垂线。在⊿ADE中,∠ADE=1200,AD=DE=a,DH=.即异面直线CD与AE间的距离为. 2 垂直平面法:转化为线面距离,若a、b是两条异面直线,过b上一点A作a的平行线a/,记a/与b确定的平面α。从而,异面直线a、b间的距离等于线面a、α间的距离. 例1 如图,BF、AE两条异面直线分别在直二面角P—AB-Q的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d,求两条异面直线BF、AE间的距离。 思路分析:BF、AE两条异面直线分别在直二面角P—AB-Q的两个面内,∠EAB=α,∠FAB=β,AB=d,在平面Q内,过B作BH‖AE,将异面直线BF、AE间的距离转化为AE与平面BCD间的距离,即为A到平面BCD间的距离,又因二面角P-AB—Q是直二面角,过A作 AC⊥AB交BF于C,即AC⊥平面ABD,过A作AD⊥BD交于D,连结CD。设A到平面BCD的距离为h.由体积法VA—BCD=VC—ABD, 得 h= 3转化为面面距离 若a、b是两条异面直线,则存在两个平行平面α、β,且a∈α、b∈β。求a、b两条异面直线的距离转化为平行平面α、β间的距离。 例3已知:三棱锥S—ABC中,SA=BC=13,SB=AC=14,SC=AB=15,求异面直线AS与BC的距离. 思路分析:这是一不易直接求解的几何题,把它补成一个易求解的几何体的典型例子,常常有时还常把残缺形体补成完整形体;不规则形体补成规则形体;不熟悉形体补成熟悉形体等。所以,把三棱锥的四个面联想到长方体割去四个直三棱锥所得,因此,将三棱锥补形转化为长方体, 设长方形的长、宽、高分别为x、y、z, 则 解得x=3,y=2,z=1。由于平面SA‖平面BC,平面SA、平面BC间的距离是2,所以异面直线AS与BC的距离是2。 4 代数求极值法 根据异面直线间距离是分别在两条异面直线上的两点间距离的最小值,可用求函数最小值的方法来求异面直线间的距离. 例4 已知正方体ABCD-A1B1C1D1的棱长为a,求A1B与D1B1的距离。 思路分析:在A1B上任取一点M,作 MP⊥A1B1,PN⊥B1D1,则MN⊥B1D1,只要求出MN的最小值即可。设A1M=x,则MP=x,A1P=x。所以PB1=a–x,PN=(a–x)sin450=(a–x),MN= =。当x=时,MNmin=。 5公式法 异面直线间距离公式:d=求得异面直线间的距离。 例5 已知圆柱的底面半径为3,高为4,A、B两点分别在两底面圆周上,并且AB=5,求异面直线AB与轴OO/之间的距离. 思路分析:在圆柱底面上AO⊥OO/,BO/⊥OO/,又OO/是圆柱的高,AB=5,所以d=。即异面直线AB与轴OO/之间的距离为。 6 射影法 将两条异面直线射影到同一平面内,射影分别是点和直线或两条平行线,那么点和直线或两条平行线间的距离就是两条异面直线射影间距离。 例6 在正方体ABCD-A1B1C1D1中,AB=1,M、N分别是棱AB、CC1的中点,E是BD的中点.求异面直线D1M、EN间的距离. 思路分析:两条异面直线比较难转化为线面、面面距离时,可采用射影到同一平面内,把异面直线D1M、EN射影到同一平面BC1内,转化为BC1、QN的距离,显然,易知BC1、QN的距离为。所以异面直线D1M、EN间的距离为。 7.向量法:先求两异面直线的公共法向量,再求两异面直线上两点的连结线段在 A B C D D1 C1 A1 B1 公共法向量上的射影长。 例7 已知:正方体ABCD-A1B1C1D1的棱长为1, 求异面直线DA1与AC的距离。 思路分析:此题是求异面直线的距离问题,这个距离可看作是 在异面直线的法向量方向上的投影的绝对值. 此题教师引导,学生口述,教师在课件上演示解题 过程,总结解题步骤. 解:如图所示建立空间直角坐标系D—xyz ∴D(0,0,0) A1(1,0,1) A(1,0,0) C(0,1,0) ∴ 设异面直线DA1与AC的法向量 ∴ ∴ ∴ ∴异面直线DA1与AC的距离为 步骤小结:求异面直线间的距离: ⑴建立空间直角坐标系; ⑵写出点的坐标,求出向量坐标; S A D B C ⑶求出异面直线的法向量的坐标; ⑷代入异面直线间的距离公式。 例8 已知:SA⊥平面ABCD,∠DAB=∠ABC=90゜, SA=AB=BC=a,AD=2a, 求A到平面SCD的距离. 解:如图所示建立空间直角坐标系A—xyz ∴A(0,0,0)C(a,a,0) D(0,2a,0) S(0,0,a) ∴=(0,2a,0)=(a,a,-a) =(0,2a,-a) 设面SCD的一个法向量=(x,y,1) ∴⊥且⊥ ∴•=0 且•=0 ∴ ∴=(1) ∴点A到面SCD的距离为 ∴点A到面SCD的距离为 八 等积法 把异面直线间的距离转化为求某个特殊几何体的的高,利用体积相等求出该高的长度。 例:正四棱锥S-ABCD中,底面边长为a,侧棱长为b(b>a). 求:底面对角线AC与侧棱SB间的距离. 设BC与平面SAD间的距离为d,则以B为顶点,△SAD为底面的三棱锥的体积为 而以S为顶点,△ABD为底面的三棱锥的体积为- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 距离 全部 方法 详细 例题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文