圆锥曲线的中点弦问题.doc
《圆锥曲线的中点弦问题.doc》由会员分享,可在线阅读,更多相关《圆锥曲线的中点弦问题.doc(4页珍藏版)》请在咨信网上搜索。
关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型: (1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题 例1、过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。 解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得: 又设直线与椭圆的交点为A(),B(),则是方程的两个根,于是 , 又M为AB的中点,所以, 解得, 故所求直线方程为。 解法二:设直线与椭圆的交点为A(),B(),M(2,1)为AB的中点, 所以,, 又A、B两点在椭圆上,则,, 两式相减得, 所以,即, 故所求直线方程为。 解法三:设所求直线与椭圆的一个交点为A(),由于中点为M(2,1), 则另一个交点为B(4-), 因为A、B两点在椭圆上,所以有, 两式相减得, 由于过A、B的直线只有一条, 故所求直线方程为。 二、求弦中点的轨迹方程问题 例2、过椭圆上一点P(-8,0)作直线交椭圆于Q点,求PQ中点的轨迹方程。 解法一:设弦PQ中点M(),弦端点P(),Q(), 则有, 两式相减得, 又因为,,所以, 所以, 而,故。 化简可得 ()。 解法二:设弦中点M(),Q(), 由,可得,, 又因为Q在椭圆上,所以, 即, 所以PQ中点M的轨迹方程为 ()。 三、弦中点的坐标问题 例3、求直线被抛物线截得线段的中点坐标。 解:解法一:设直线与抛物线交于, ,其中点,由题意得, 消去y得,即, 所以,,即中点坐标为。 解法二:设直线与抛物线交于, ,其中点,由题意得,两式相减得, 所以, 所以,即,,即中点坐标为。 上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。下面我们看一个结论 引理 设A、B是二次曲线C:上的两点,P为弦AB的中点,则 。 设A、B则……(1) ……(2) 得 ∴ ∴ ∵∴ ∴即。 (说明:当时,上面的结论就是过二次曲线C上的点P的切线斜率公式,即) 推论1 设圆的弦AB的中点为P(, 则。(假设点P在圆上时,则过点P的切线斜率为) 推论2 设椭圆的弦AB的中点为P(,则。(注:对a≤b也成立。假设点P在椭圆上,则过点P的切线斜率为) 推论3 设双曲线的弦AB的中点为P(则。(假设点P在双曲线上,则过P点的切线斜率为) 推论4 设抛物线的弦AB的中点为P(则。(假设点P在抛物线上,则过点P的切线斜率为 我们可以直接应用上面这些结论解决有关问题,下面举例说明。 例1、求椭圆斜率为3的弦的中点轨迹方程。 解:设P(x,y)是所求轨迹上的任一点,则有,故所示的轨迹方程为16x+75y=0 例2、已知椭圆A、B是椭圆上两点,线段AB的垂直平分线l与x轴相交于P,求证:。 证明:设AB的中点为T,由题设可知AB与x轴不垂直,∴, ∴ ∵l⊥AB ∴ ∴l的方程为: 令y=0 得 ∴ ∵ ∴ ∴ 例3、已知抛物线C:,直线 要使抛物线C上存 在关于对称的两点,的取值范围是什么? 解:设C上两点A、B两点关于对称,AB的 中点为P( ∴ ∴∵P∈∴ ∴ ∴ ∴ ∵P在抛物线内 ,∴ ∴ ∴ ∴ 第4页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 中点 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文