圆锥曲线基础题(有标准答案).doc
《圆锥曲线基础题(有标准答案).doc》由会员分享,可在线阅读,更多相关《圆锥曲线基础题(有标准答案).doc(4页珍藏版)》请在咨信网上搜索。
圆锥曲线基础训练 一、选择题: 1. 已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为 ( ) A. B. C. D. 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为,焦距为,则椭圆的方程为 ( ) A. B. C.或 D.以上都不对 3.动点到点及点的距离之差为,则点的轨迹是 ( ) A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线 4.抛物线的焦点到准线的距离是 ( ) A. B. C. D. 5.若抛物线上一点到其焦点的距离为,则点的坐标为 ( ) A. B. C. D. 二、填空题 6.若椭圆的离心率为,则它的长半轴长为_______________. 7.双曲线的渐近线方程为,焦距为,这双曲线的方程为_______________。 8.若曲线表示双曲线,则的取值范围是 。 9.抛物线的准线方程为 . 10.椭圆的一个焦点是,那么 。 三、解答题 11.为何值时,直线和曲线有两个公共点?有一个公共点?没有公共点? 12.在抛物线上求一点,使这点到直线的距离最短。 13.双曲线与椭圆有共同的焦点,点是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。 14.已知双曲线的离心率,过的直线到原点的距离是 (1)求双曲线的方程; (2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值. 15 经过坐标原点的直线与椭圆相交于A、B两 点,若以AB为直径的圆恰好通过椭圆左焦点F,求直线的倾斜角. 16.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭 圆交于P和Q,且OP⊥OQ,|PQ|=,求椭圆方程. 参考答案 1.D 点到椭圆的两个焦点的距离之和为 2.C 得,或 3.D ,在线段的延长线上 4.B ,而焦点到准线的距离是 5.C 点到其焦点的距离等于点到其准线的距离,得 6. 当时,; 当时, 7. 设双曲线的方程为,焦距 当时,; 当时, 8. 9. 10. 焦点在轴上,则 三、解答题 11.解:由,得,即 当,即时,直线和曲线有两个公共点; 当,即时,直线和曲线有一个公共点; 当,即时,直线和曲线没有公共点。 12.解:设点,距离为, 当时,取得最小值,此时为所求的点。 13.解:由共同的焦点,可设椭圆方程为; 双曲线方程为,点在椭圆上, 双曲线的过点的渐近线为,即 所以椭圆方程为;双曲线方程为 14.(本题12分)∵(1)原点到直线AB:的距离. 故所求双曲线方程为 (2)把中消去y,整理得 . 设的中点是,则 即 故所求k=±. ( 为了求出的值, 需要通过消元, 想法设法建构的方程.) 15.(本小题满分12分)分析:左焦点F(1,0), 直线y=kx代入椭圆得, , 。 由AF知。 将上述三式代入得,或。 16.(本小题满分12分)解:设椭圆方程为mx2+ny2=1(m>0,n>0),P(x1,y1),Q(x2,y2) 由 得(m+n)x2+2nx+n-1=0, Δ=4n2-4(m+n)(n-1)>0,即m+n-mn>0, 由OP⊥OQ,所以x1x2+y1y2=0,即2x1x2+(x1+x2)+1=0, ∴+1=0,∴m+n=2 ① 又22, 将m+n=2,代入得m·n= ② 由①、②式得m=,n=或m=,n= 故椭圆方程为+y2=1或x2+y2=1. - 4 - / 4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 基础 标准答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文