相交线和平行线典型例题及拔高训练(附答案).doc
《相交线和平行线典型例题及拔高训练(附答案).doc》由会员分享,可在线阅读,更多相关《相交线和平行线典型例题及拔高训练(附答案).doc(5页珍藏版)》请在咨信网上搜索。
4.2 相交线和平行线 典型例题及强化训练 课标要求 ①了解对顶角,知道对项角相等。 ②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。 ③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。 ④知道两直线平行同位角相等,进一步探索平行线的性质 ⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线。 ⑥体会两条平行线之间距离的意义,会度量两条平行线之间的距离。 典型例题 1.判定与性质 例1 判断题: 1)不相交的两条直线叫做平行线。 ( ) 2)过一点有且只有一条直线与已知直线平行。 ( ) 3)两直线平行,同旁内角相等。 ( ) 4)两条直线被第三条直线所截,同位角相等。 ( ) 答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线”。 (2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”。 (3)错,应为“两直线平行,同旁内角互补 ”。 (4)错,应为“两条平行线被第三条直线所截,同位角相等”。 例2 已知:如图,AB∥CD,求证:∠B+∠D=∠BED。 分析:可以考虑把∠BED变成两个角的和。如图5,过E点引一条直线EF∥AB,则有∠B=∠1,再设法证明∠D=∠2,需证 EF∥CD,这可通过已知AB∥CD和EF∥AB得到。 证明:过点E作EF∥AB,则∠B=∠1(两直线平行,内错角相等)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠D=∠2(两直线平行,内错角相等)。 又∵∠BED=∠1+∠2, ∴∠BED=∠B+∠D(等量代换)。 变式1已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D)。 分析:此题与例1的区别在于E点的位置及结论。我们通常所说的∠BED都是指小于平角的角,如果把∠BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。 证明:过点E作EF∥AB,则∠B+∠1=180°(两直线平行,同旁内角互补)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠D+∠2=180°(两直线平行,同旁内角互补)。 ∴∠B+∠1+∠D+∠2=180°+180°(等式的性质)。 又∵∠BED=∠1+∠2, ∴∠B+∠D+∠BED=360°(等量代换)。 ∴∠BED==360°-(∠B+∠D)(等式的性质)。 变式2已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。 分析:此题与例1的区别在于E点的位置不同,从而结论也不同。模仿例1与变式1作辅助线的方法,可以解决此题。 证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠FED=∠D(两直线平行,内错角相等)。 ∵∠BED=∠FED-∠FEB, ∴∠BED=∠D-∠B(等量代换)。 变式3已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。 分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。 证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补)。 ∵AB∥CD(已知), 又∵EF∥AB(已作), ∴EF∥CD(平行于同一直线的两条直线互相平行)。 ∴∠FED+∠D=180°(两直线平行,同旁内角互补)。 ∴∠1+∠2+∠D=180°。 ∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。 ∴∠2=∠B-∠D(等式的性质)。 即∠BED=∠B-∠D。 例3 已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。 证法一:过F点作FG∥AB ,则∠ABF=∠1(两直线平行,内错角相等)。 过E点作EH∥CD ,则∠DCE=∠4(两直线平行,内错角相等)。 ∵FG∥AB(已作),AB∥CD(已知), ∴FG∥CD(平行于同一直线的两条直线互相平行)。 又∵EH∥CD (已知), ∴FG∥EH(平行于同一直线的两条直线互相平行)。 ∴∠2=∠3(两直线平行,内错角相等)。 ∴∠1+∠2=∠3+∠4(等式的性质) 即∠BFE=∠FEC。 证法二:如图10,延长BF、DC相交于G点。 ∵AB∥CD(已知), ∴∠1=∠ABF(两直线平行,内错角相等)。 又∵∠ABF=∠DCE(已知), ∴∠1=∠DCE(等量代换)。 ∴BG∥EC(同位角相等,两直线平行)。 ∴∠BFE=∠FEC(两直线平行,内错角相等)。 如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。 证法三:(如图12)连结BC。 ∵AB∥CD(已知), ∴∠ABC=∠BCD(两直线平行,内错角相等)。 又∵∠ABF=∠DCE(已知), ∴∠ABC-∠ABF =∠BCD-∠DCE(等式的性质)。 即∠FBC=∠BCE。 ∴BF∥EC(内错角相等,两直线平行)。 ∴∠BFE=∠FEC(两直线平行,内错角相等)。 强化训练 一.填空 1.完成下列推理过程 ①∵∠3= ∠4(已知), __∥___( ) ②∵∠5= ∠DAB(已知), ∴____∥______( ) ③∵∠CDA + =180°( 已知 ), ∴AD∥BC( ) 2. 如图,已知DE∥BC,BD是∠ABC的平分线,∠EDC=109°, ∠ABC=50°则∠A 度,∠BDC= 度。 3. 如图,AB∥CD,BE,CE分别平分∠ABC,∠BCD, 则∠AEB+∠CED= 。 4、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________ 。 5、已知:如图,直线AB和CD相交于O,OE平分∠BOC, 且∠AOC=68°,则∠BOE= 二.选择题 1.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( ) A 南偏西50度方向; B南偏西40度方向 ; C 北偏东50度方向 ; D北偏东40度方向 2.如图,AB∥EF∥DC,EG∥BD, 则图中与∠1相等的角共有( )个 A 6个 B .5个 C .4个 D.2个 3、同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是( ) A、 a∥d B 、b⊥d C、a⊥d D、b∥c 4、如图,∠1和∠2互补,∠3=130°,那么∠4的度数是( ) A. 50° B. 60° C.70° D.80° 5.已知:AB∥CD,且∠ABC=20°,∠CFE=30°, 则∠BCF的度数是 ( ) A. 160° B.150° C.70° D.50° 6(2003南 通 市)判断题已知,如图,下列条件中不能判断直线l1∥l2的是( ) (A)∠1=∠3 (B)∠2=∠3 (C)∠4=∠5 (D)∠2+∠4=180° 7.( 北京市海淀区2003年). 如图,直线c与直线a、b相交,且a//b,则下列结论:(1);(2);(3)中正确的个数为( ) A. 0 B. 1 C. 2 D. 3 8.(2004年浙江省富阳市)下列命题正确的是( ) A、两直线与第三条直线相交,同位角相等;B、两线与第三线相交,内错角相等; C、两直线平行,内错角相等; D、两直线平行,同旁内角相等。 9.(2003年安徽省)如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有……( ) A.1个 B.2个 C.3个 D.4个 C A B E D 10.( 日照市2004年)如图,已知直线AB∥CD,当点E直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是 ( ) A ∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDE; B ∠BED=∠ABE-∠CDE C ∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDE; D ∠BED=∠CDE-∠ABE 三.解下列各题: 1.如图,已知OA⊥OC,OB⊥OD,∠3=26°,求∠1、∠2的度数。 2、已知AD∥BC,∠A= ∠C,求证:AB∥CD。 第3题 第1题 第2题 3.如图,AB∥CD,求∠BAE+∠AEF+∠EFC+∠FCD的度数. 4.已知,如图AC⊥BC,HF⊥AB,CD⊥AB, ∠EDC与∠CHF互补, 求证:DE⊥AC. 3 2 1 F D E A B C G 第4题 第5题 第6题 5.如图,已知AB∥ED,∠ABC=135°,∠BCD=80°,求∠CDE的度数。 6.已知:如图,AD⊥BC于D,EG⊥BC于G,AE =AF.求证:AD平分∠BAC。 四、如图A、B是两块麦地,P是一个水库,A、B之间有一条水渠,现在要将水库中的水引到A、B两地浇灌小麦,你认为怎样修水渠省时省料经济合算?请说出你的设计方案,并说明理由。 相交线与平行线 2. 1略;121°,84°;3. 90°;4.-10;5。56° 二. 题号 1 2 3 4 5 6 7 8 9 10 答案 B B A A D B D C B C 三.1.解:∵OA⊥OC,OB⊥OD ∴∠1+∠2 =90°,∠3+∠2 =90° ∴∠1=∠3=26° ∴∠2=64° 2证明:∵AD∥BC, ∴∠A+∠B=180° ∵∠A= ∠C, ∴∠C+∠B=180° ∴AB∥CD. 2. 解:连结AC. ∵AB∥DC ∴∠CAB+∠ACD=180° ∵∠CAE+∠ACF+∠E+∠F =360° ∴∠CAB+∠ACD=180° ∴∠BAE+∠AEF+∠EFC+∠FCD=540° 4. 证明:∵HF⊥AB,AB⊥CD ∴CD∥HF, ∴∠CHF+∠HCD=180° ∵∠EDC与∠CHF互补, ∴∠EDC = ∠HCD, ∴ED∥CB ∴∠AED=∠ACB ∵∠ACB=90° ∴∠AED=90° ∴DE⊥AC. 5.解:延长BC交 DE于F. 由∠ABC=135°易得∠BFD=45°, 又∠BCD=80°,得∠CDE=35° 6. 证明:∵AD⊥BC于D,EG⊥BC于G ∴AD∥EG, ∴∠2=∠3, ∠1=∠E, ∵AE =AF ∴∠E = ∠3, ∴∠1 = ∠2, ∴AD平分∠BAC。 四.略- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相交 平行线 典型 例题 拔高 训练 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文