《平行四边形》教案.doc
《《平行四边形》教案.doc》由会员分享,可在线阅读,更多相关《《平行四边形》教案.doc(35页珍藏版)》请在咨信网上搜索。
第六章 平行四边形 1. 平行四边形的性质(一) 知识与技能目标: 学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。 过程与方法目标: 在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。 情感态度与价值观目标: 1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯; 2.探索并掌握平行四边形的性质,并能简单应用; 教学重点: 平行四边形性质的探索。 教学难点: 平行四边形性质的理解。 教学方法: 探索归纳法 教学过程 第一环节:实践探索,直观感知 1.小组活动一 内容: 问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。 (1)你拼出了怎样的四边形?与同桌交流一下; (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。 目的: 通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形; 平行四边形的相邻的两个顶点连成的一段叫做它的对角线。 教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示 “ ”。 2.小组活动二 内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗? 目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。 效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。 第二环节 探索归纳、合作交流 小组活动三: 内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗? ⑵你还发现平行四边形的那些性质呢? 活动目的: 这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。 活动注意事项: 引导学生动手操作、复制、旋转、观察、分析,在剪切平行四边形纸片时,要保证上下纸片的大小、形状完全相同。 第三环节 推理论证、感悟升华 1.实践探索内容 (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边形的对应边、对应角分别相等。 (2)可以通过推理来证明这个结论。 例:如图6-2(1),四边形ABCD是平行四边形. 求证:AB=CD,BC=DA. 证明:如图6-2(2),连接AC. ∵ 四边形ABCD是平行四边形 ∴AD // BC, AB // CD ∴ ∠1=∠2,∠3=∠4 ∴ △ABC和△CDA中 ∠2=∠1 AC=CA ∠3=∠4 ∴ △ABC≌△CDA(ASA) ∴ AB=DC, AD=CB 学生证明:平行四边形的对角相等. 2.活动目的: 学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。 3.活动效果: “实践→认识→再实践→认识”是数学学习的重要方法,说理论证平行四边形的性质时学生能很好地接受,由此看出这一年龄段的学习完全可以由感性的认知上升到理性的证明。 第四环节 应用巩固 深化提高 1. 活动内容: (1)练一练:已知:如图6-3,在ABCD中, E,F是对角线AC上的两点,且AE=CF. 求证:BE=DF. 证明:∵四边形ABCD是平行四边形 ∴ AB = CD AB // CD ∴ ∠BAE=∠DCF 又∵ AE=CF ∴ △BAE≌△DCF ∴ BE=DF ⑵ 议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗? A(学生思考、议论) B总结归纳:可以确定其它三个内角的度数。 由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。 2.活动目的: 通过练一练,议一议,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。 3.活动效果: 学生经过通过此环节的思、议、练进一步理解和应用掌握了平行四边形的性质特征,是对探索归纳:比较的综合提高。 第五环节 评价反思 概括总结 1.活动内容 [1]师生相互交流、反思、总结。 (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。 (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点? (3)本节学习到了什么?(知识上、方法上) 2.活动目的: 鼓励学生交流课堂实践、观察探索的经历、感受和收获;鼓励学生勇于进行自我评价,进一步培养学生反思意识及总结能力。 3.活动效果: 学生踊跃谈感受和收获,本节学习了平行四边形的概念,探索了平行四边形的性质:平行四边形对边相等,平行四边形对角相等;平行四边形对角线互相平分。 [2]考一考: 1. ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。 2. ABCD中,∠A比∠B大20°,则∠C= 。 3. ABCD中,AB=3,BC=5,则AD= CD= 。 4. ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。 A.5cm B.15cm C.6cm D.16cm 参考答案 1.120° 120° 60° 2.100° 3.5cm 3cm 4.A [3]布置作业 (1)课本习题6.1 1,2,3,4. (2)想一想(请同学们思考探究) 如图 ABCD中,平行于对角线BD的直线MN分别交CD,CB的延长线于M,N,交AD于P,交AB于Q,你能说明MQ=NP吗?说说你的理由。 [4]师生共勉,把一件平凡的事做好,就是又平凡,把一件简单事情做好就是不简单。 4.活动目的: 1.通过作业的巩固对平行四边形性质理解并学会应用。 2.想一想,旨在的同学们探究意识延伸。 教学反思 1.本节教材直观感知活动较多,由学生的心理及年龄特点决定,学生有一定的逻辑思考能力及说理能力,因此从理性角度分析平行四边形的性质特点是非常需要的。 2.学生在“议一议,练一练”环节中,要引导有条理的叙述及数学语言的表达。 1. 平行四边形的性质(二) 知识与技能目标: 学生经历了对平行四边形性质探索的过程,掌握了平行四边形对边、对角的性质特征,并能简单应用。 过程与方法目标: 对平行四边形具有了一定的观察分析的能力和合情推理能力,具备了自行得出平行四边形对角线的性质的基础。 情感态度与价值观目标: 1.进一步掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质; 2.在应用中进一步发展学生合情推理能力,增强逻辑推理能力,掌握说理的基本方法。 3.通过解决问题,探究并归纳:“平行线间的距离处处相等”这一性质。 教学重点: 平行四边形性质的应用 教学难点: 发展合情推理及逻辑推理能力 教学方法: 启发诱导法,探索分析法 教学过程 第一环节 回顾思考,引入新课 活动内容: 以问题串形式回顾平行四边形的概念和平行四这形的性质。温故知新。 1.平行四边形都有哪些性质? 2.回顾思考 选择题 (1)平行四边形ABCD中,∠A比∠B大20°,则∠C的度数为( ) A.60° B.80° C.100° D.120° (2)平行四边形ABCD的周长为40cm,三角形ABC的周长为25cm, 则对角线AC长为( ) A.5cm B.15cm C.6cm D.16cm (3)平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有 参考答案: 1. C. 2. A. 3.4对. 活动目的: 1.通过(1)~(3)的问题串,反馈学生对平行四边形的对边、对角性质的理解和简单应用,同时总结结论:平行四边形对角线互相平分。 活动效果: 能真实客观反馈学生对上节“平行四边形性质”的情况,并有针对性的在本节补救强化。 第二环节 探索发现,灵活运用 活动内容: 一、 探索问题1 在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢? A.(学生思考、交流)得出:平行四边形的对角线互相平分。 B.请尝试证明这一结论 已知:如图6-4,平行四边形ABCD的对角线AC、BD相交于点O. 求证:OA=OC,OB=OD. 证明: ∵四边形ABCD是平行四边形 ∴ AB=CD AB//DC ∴ ∠BAO=∠DCO ∠ABO=∠CDO ∴ △AOB≌△COD ∴ OA=OC,OB=OD. 你还有其他的证明方法吗,与同伴交流。 活动目的: 通过对上节课做一做的回顾,得出平行四边形对角线互相平分的性质,再通过严格的说理证明,深化对知识的理解。 活动效果及注意: 因为有上节课的基础,学生对于定理的证明已具备一定的基础,但是在证明完定理后应该给学生强调:定理的证明只是让学生进一步理解定理,而在定理的运用时则没必要这么麻烦,直接由平行四边形可得出其对角线互相平分。 二、[练一练] 活动内容 探索问题2 例1.如图6-5,在平行四边形ABCD中,点O是对角线AC、BD的交点,过点O的直线分别与AD、BC交于点E、F. 求证:OE=OF. A.议论交流 B.师生共析归纳 解:∵四边形ABCD是平行四边形 ∴ AD=CB AD//BC OA=OC ∴ ∠DAC=∠ACB 又∵∠AOE=∠COF ∴△AOE≌△COF ∴OE=OF 探索问题2 如图6-6, 平行四边形ABCD的对角线AC、BD相交于点O, ∠ADB=900,OA=6,0B=3.求AD和AC的长度. 解: ∵四边形ABCD是平行四边形 ∴OA=OC=6 OB=OD=3 ∴AC=12 又∵∠ADB=900 ∴在Rt△ADO中,根据勾股定理得 OA2=0D2+AD2 ∴AD=3√3 活动目的: 通过练一练的两个问题的训练,进一步巩固平行四边形的性质,并学会应用。 第三环节 观察分析,理性升华 例2 已知,如图,在平行四边形ABCD中,平行于对角线AC的直线MN分别交DA,DC的延长线于M,N,交BA,BC于点P,点B,你能说明MQ=NP吗? A.学生独立观察分析 B.交流探索 C.师生共析小结 解:∵四边形ABCD是平行四边形 ∴AD//BC,AB//CD 即AM//CQ 又∵AC//MN 即AC//MQ ∴由平行四边形定义得四边形MQCA是平行四边形 ∴MQ=AC 同理 NP=AC ∴MQ=NP 小结:利用平行四边形可以证明两线段相等 第四环节 巩固反馈,总结提高 活动内容: 一、通过练习,进一步应用平行四边形性质,达到掌握的程度。 1.在平行四边形ABCD中,∠A=150°,AB=8cm,BC=10cm,求平行四边形ABCD的面积。 A.学生议论 B.师生共评 解:过A作AE⊥BC交BC于E, ∵四边形ABCD是平行四边形 ∴AD//BC ∴∠BAD+∠B =180° ∵∠BAD =150° ∴∠B =30° 在Rt△ABE中,∠B =30° ∴AE =1/2AB=4 ∴平行四边形ABCD的面积=4×10=40cm2 小结:平行四边形的问题,可以转化为三角形,问题解决。 活动目的: 由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发,本环节让学生应用的结论进行说理和推理实理理性升华,培养语言表达能力。 二、计算题 1.课本随堂练习 2.平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。 解: ∵四边形ABCD是平行四边形 ∴AB=CD,AD=BC OA=OC,OB=OD 又∵OA=3cm, OB=4cm, AB=5cm ∴AC=6cm BD=8cm CD=5cm ∵△AOB中,32+42=52,即AO2+BO2=AB2 ∴∠AOB =90° ∴AC⊥BD ∴Rt△AOD中,OA2+OD2=AD2 ∴AD=5cm,BC=5cm, 答:这个平行四边形的其它各边都是5cm,两条对角线长分别为6cm和8cm。 活动效果: 通过一组训练,达到了学生对平行四边形性质的掌握。 第五环节 评价反思,目标回顾 活动内容: 1.本节课你有哪些收获?你能将平行四边形的性质进行归纳吗? 2.本节通过实例,你如何理解“两条平行线间距离”? 3.利用平行四边形可以解决哪些问题? 4.你能给自己和同伴本节课一个评价吗? 5.布置作业:1、 习题6.2 1,2,3, 4 2、2、完成《学考精练》对应练习 教学反思:把一件平凡的事情做好,就不平凡,把一件简单的事情做好就不简单。 2. 平行四边形的判定(一) 知识技能目标 1.会证明平行四边形的2 种判定方法. 2.理解平行四边形的这两种判定方法,并学会简单运用. 过程与方法目标 1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识. 2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力. 情感态度价值观目标 通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情. 教学重点:平行四边形判定方法的探究、运用. 教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用. 教学方法:师生共同讨论法. 教学过程 第一环节 复习引入: 问题1(多媒体展示问题) 1.平行四边形的定义是什么?它有什么作用? 2.平行四边形还有哪些性质? 目的: 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,总结出平行四边形的其他几条性质. 在此活动中,教师应重点关注: (1)学生参与思考问题的积极性; (2)学生能否准确、全面地回答出平行四边形的全部性质; (3)学生能否由平行四边形的性质,猜测出平行四边形的判断方法. 第二环节 定理探索 活动1: 工具:两对长度分别相等的笔. 动手:能否在平面内用这四根笔摆成一个平行四边形? 思考1.1:你能说明你所摆出的四边形是平行四边形吗? 已知:如图6-8(1),在四边形ABCD中,AB=CD,BC=AD 求证:四边形ABCD是平行四边形. 证明:如图6-8(2)连接BD. 在△ABD和△CDB中 ∵AB=CD AD=CB BD=DB ∴△ABD≌△CDB ∴∠1=∠2 ∠3=∠4 ∴AB∥CD AD∥CB ∴四边形ABCD是平行四边形 思考1.2:以上活动事实,能用文字语言表达吗? 得出:两组对边分别相等的四边形是平行四边形。 目的: 学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到: (1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形. (2)通过观察、实验、猜想到:两组对边分别相等的四边形是平行四边形. 通过学生的互相交流,口述其推理论证的过程.根据学生的认知水平,教师应估计到学生可能会在推理论证时遇到困难,所以应加以适当引导. 在此活动中,教师应重点关注: (1)学生在拼四边形时,能否将相等两木条作为四边形的对边; (2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形; (3)学生能否通过独立思考、小组合作得出正确的证明思路. 活动2 工具:两根长度相等的笔, 两条平行线(可利用横格线). 动手:请利用两根长度相等的笔能摆出以笔顶端为顶点的平行四边形吗? 利用两根长度相等的笔和两条平行线,能摆出以笔顶端为顶点的平行四边形吗? 思考2.1:你能说明你所摆出的四边形是平行四边形吗? 如图6-9(1),在四边形ABCD中,AB∥CD, 且AB=CD. 求证:四边形ABCD是平行四边形. 证明:如图6-9(2),连接AC. ∵ AB∥CD ∴ ∠BAC=∠ACD 又∵ AB=CD AC=CA ∴ △BAC≌△DCA ∴ BC=AD ∴ 四边形ABCD是平行四边形 思考2.2:以上活动事实,能用文字语言表达吗? 得出:一组对边平行且相等的四边形是平行四边形. 目的: 得出平行四边形的判定:一组对边平行且相等的四边形是平行四边形. 注意事项 在此活动中,教师应重点关注: (1)学生实验操作的准确性; (2)学生能否运用不同的方法从理论上证明他们的猜想、发现; (3)学生使用几何语言的规范性和严谨性. 第三环节 巩固练习 (一)例1 如图6-10,在平行四边形ABCD中,E、F分别是AD和BC的 中点. 求证:四边形BFDE是平行四边形. 证明:∵四边形ABCD是平行四边形 ∴ AD=CB AD//BC 又∵E、F分别是AD和BC的 中点 ∴ED=1|2AD BF=1|2BC ∴DE=BF 又∵ED∥BF ∴四边形BFDE是平行四边形 (二)随堂练习1、2、3: 第四环节 回顾小结: 师生共同小结,主要围绕下列几个问题: (1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的? (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发? (3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法. 目的: 鼓励学生畅所欲言,总结对本节课的收获和体会;自主建构知识体系,锻炼学生的口头表达能力,培养学生的自信心;进一步加深对所学知识的理解和记忆。 第五环节 布置作业: 1、课本习题6.3第1题、第2题、第3题 2、完成《学考精练》对应练习 教学反思 本节课在引入的环节上,采用复习引入的方式.首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫. 知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课判定方法的得出都非常重视知识的发生、形成过程,让学生亲历了类比、观察、实验、猜想、验证、推理的整个过程,培养学生的探究能力,发展学生的合情推理能力.学生把所学知识灵活地加以运用,有效地激发了学生的学习兴趣,提高了学习效率. 数学的学习要重视学习方法的指导.本节课通过由浅入深的练习和灵活的变式,引导学生善于抓住图形的基本特征和题目的内在联系,达到触类旁通的效果. 2. 平行四边形的判定(二) 知识技能目标 1.会证明对角线互相平分的四边形是平行四边形这一判定定理. 2.理解对角线互相平分的四边形是平行四边形这一判定定理,并学会简单运用. 过程与方法目标 1.经历平行四边行判别条件的探索过程,在探究活动中发展学生的合情推理意识. 2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的几何表达能力. 情感态度价值观目标 通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情. 教学重点:平行四边形判定方法的探究、运用. 教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用. 教学方法:师生共同讨论法. 教学过程 第一环节 复习引入: 问题1(多媒体展示问题) 1.平行四边形的定义是什么?它有什么作用? 2.判定四边形是平行四边形的方法有哪些? (1)两组对边分别平行的四边形是平行四边形. (2)一组对边平行且相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. 目的: 1.教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,总结出判定四边形是平行四边形的几个条件. 2.对比平行四边形的性质,猜测平行四边形判断的其他方法。 第二环节 探索活动 活动: 工具:两根不同长度的细木条. 动手:能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形? 思考2.1:你能说明你得到的四边形是平行四边形吗? 思考2.2:以上活动事实,能用文字语言表达吗? (得出:对角线互相平分的四边形是平行四边形.) 已知:如图6-12,四边形ABCD的对角线AC、BD相交于点O,并且OA=OC,OB=OD. 求证:四边形ABCD是平行四边形. 证明: ∵OA=OC,OB=OD 且∠AOB=∠COD ∴△AOB≌△COD ∴AB=CD 同理可得:BC=AD ∴四边形ABCD是平行四边形. 目的: 得出平行四边形的判定定理:对角线互相平分的四边形是平行四边形 注意事项 在此活动中,教师应重点关注: (1)学生实验操作的准确性; (2)学生能否运用不同的方法从理论上证明他们的猜想、发现; (3)学生使用几何语言的规范性和严谨性. 第三环节 巩固练习 例1 .已知:如图6-13(1),在平行四边形ABCD 中,点E、F在对角线AC上,并且AE=CF. 求证:四边形BFDE是平行四边形吗? 证明: 如图6-13(2),连接BD. ∵ 四边形ABCD是平行四边形 ∴ OA=OC OB=OD 又∵AE=CF ∴OA-AE=OC-CF ∴OE=OF ∴四边形BFDE是平行四边形 变式练习:② 对于上述例题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗? 随堂练习 1.判断下列说法是否正确 (1)一组对边平行且另一组对边相等的四边形是平行四边形 ( ) (2)两组对角都相等的四边形是平行四边形 ( ) (3)一组对边平行且一组对角相等的四边形是平行四边形 ( ) (4)一组对边平行,一组邻角互补的四边形是平行四边形 ( ) 2.如图:AD是ΔABC的边BC边上的中线. (1)画图:延长AD到点E,使DE=AD,连接BE,CE; (2)判断四边形ABEC的形状,并说明理由. 3.想一想:如图有一块平行四边形玻璃镜片,不小心打掉了一块,但是有两条边是完好的.同学们想想看,有没有办法把原来的平行四边形重新画出来? (让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨,最后请学生回答画图方法) 学生想到的画法有: (1)分别过A,C作BC,BA的平行线,两平行线相交于D; (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD; (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD. 目的:通过练习进行强化和巩固,加深学生对定理的理解,从而达到灵活的运用. 第四环节 回顾小结: 师生共同小结,主要围绕下列几个问题: (1)判定一个四边形是平行四边形的方法有哪几种? (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发? (3)平行四边形判定的应用 目的: 鼓励学生畅所欲言,总结对本节课的收获和体会;自主建构知识体系,锻炼学生的口头表达能力,培养学生的自信心;进一步加深对所学知识的理解和记忆。 第五环节 布置作业: 1、 随堂练习第1题 课本习题6.4的第1题,第2题 2、完成《学考精练》对应练习 教学反思 本节课的设计通过探究活动的开展探求平行四边形的判定方法,通过对判定方法的进一步理解,典型例题的分析,精选的随堂练习,学生一定能够掌握平行四边形的判定方法及应用判定方法解决实际生活的问题. 2. 平行四边形的判定(三) 知识技能目标 1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法. 2.理解对角线互相平分的四边形是平行四边形这一判定定理,并学会简单运用. 过程与方法目标 经历平行四边行判别条件的探索过程,在探究活动中发展学生的合情推理意识. 情感态度与价值观目标: 在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的几何表达能力. 教学重点:平行四边形判定方法的综合运用. 教学难点:平行四边形的性质和判定的综合运用. 教学过程 第一环节 复习引入: 问题1(多媒体展示问题) 1. 平行四边形的定义是什么?它有什么作用? 2. 平行四边形有那些性质? 3.判定四边形是平行四边形的方法有哪些? 目的: 教师提出问题,由学生独立思考,并口答得出定义正反两方面的作用.总结出平行四边形的性质和判定四边形是平行四边形的几个条件. 问题2 (多媒体展示问题) 在笔直的铁轨上,夹在铁轨之间的平行枕木是否一样长? 你能说明理由吗?与同伴交流. 目的: 从实际的生活出发,让学生感受数学来源于生活又服务于生活. 将生活中的问题抽象成数学问题: 已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图, (1)线段AC,BD所在直线有什么样的位置关系? (2)比较线段AC,BD的长。 A.(学生思考、交流) B.(师生归纳) 解(1)由AC⊥b,BD⊥b,得AC//BD。 (2)a//b,AC//BD,→四边形ACDB是平行四边形 →AC=BD 归纳: 若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。 即平行线间的距离相等。 [议一议]: 夹在平行线之间的平行线段一定相等吗? 结论:夹在平行线间的平行线段一定相等. 活动目的: 通过对平行四边形性质的简单应用,引入了平行线之间的距离的概念;再通过生活中的生活实例的应用,深化对知识的理解。 活动效果及注意: 1.在引入平行线之间的距离概念中,先引入点到直线的距离,再通过点到直线的距离来刻画平行线间的距离。 2.在应用平行四边形性质的同时深入知识、效果很好,学生易于接受。、 第二环节 探索活动 做一做: 如图6-15,以方格纸的格点为顶点画出几个平行四边形,并说明的画得方法和其中的道理. 目的: 通过网格中学生画平行四边形并说理,进一步让学生掌握平行四边形的判定定理. 注意事项 在此活动中,教师应重点关注: (1)学生实验操作的准确性; (2)学生能否运用不同的判定方法对所画得图形进行说明; (3)学生使用几何语言的规范性和严谨性. 第三环节 巩固练习 例1 .如图6-16,在平行四边形ABCD中,点M、N 分别是AD、BC上的两点,点E、F在对角线BD上,且DM=BN,BE=DF. 求证:四边形MENF是平行四边形. 证明:∵四边形ABCD是平行四边形 ∴AD∥CB ∴∠MDF=∠NBE 又∵DM=BN DF=BE ∴△MDF≌△NBE ∴MF=EN ∠MFD=∠NEB ∴∠MFE=∠NEF ∴MF∥EN ∴四边形MENF是平行四边形. 随堂练习: 如图:平行四边形ABCD中,∠ABC=700,∠ABC的平分线交AD于点E,过 D作BE的平行线交BC于点F , 求∠CDF的度数. (作法多种,可让学生板演,教师在学生中巡视,随时指出学生作业中的问题) 目的:通过练习进行强化和巩固,加深学生对平行四边形的性质定理和判定定理的理解,从而达到灵活的运用. 第四环节 回顾小结: 师生共同小结,主要围绕下列几个问题: (1)平行四边形的性质有哪些,判定一个四边形是平行四边形的方法有哪几种? (2)夹在平行线间的平行线段有何特点,你是怎样得到结论的? (3)能综合运用平行线的性质和判定定理。 目的: 鼓励学生畅所欲言,总结对本节课的收获和体会;自主建构知识体系,锻炼学生的口头表达能力,培养学生的自信心;进一步加深对所学知识的理解和记忆。 第五环节 布置作业: 1、随堂练习第1题 课本习题6.5的第1,2,3, 4, 5题 2、完成《学考精练》对应练习 教学反思 本节课的设计通过探究活动的开展探求平行四边形的判定方法,通过对判定方法的进一步理解,典型例题的分析,精选的随堂练习,学生一定能够掌握平行四边形的判定方法及应用判定方法解决实际生活的问题. 3. 三角形的中位线 知识与技能目标: (1) 知道三角形中位线的概念,明确三角形中位线与中线的不同。 (2) 理解三角形中位线定理,并能运用它进行有关的论证和计算。 (3) 通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图形解决较复杂问题的能力. 过程与方法目标: 引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生 观察问题、分析问题和解决问题的能力。 情感态度与价值观目标: 1、对学生进行事物之间相互转化的辩证的观点的教育。 情感目标 2、利用制作的课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。 教学重点: 三角形中位线定理 教学难点: 证明三角形中位线性质定理时辅助线的添法和性质的录活应用. 教学过程 第一环节:创设情景,导入课题 1.怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形? 操作:(1)剪一个三角形,记为△ABC (2)分别取AB,AC中点D,E,连接DE (3) 沿DE将△ABC剪成两部分,并将△ABC绕点E旋转180°,得四边形BCFD. 2、思考:四边形ABCD是平行四边形吗? 3、探索新结论:若四边形ABCD是平行四边形,那么DE与BC有什么位置和数量关系呢? 目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连串的递进问题,启发学生逆向类比猜想:DE∥BC,DE=BC. 由此引出课题.。 效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。 第二环节:教师讲授,传授新知 内容: 引入三角形中位线的定义和性质 1.定义三角形的中位线,强调它与三角形的中线的区别. 2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半 目的:通过学生前期的猜测,测量,初步感知三角形中位线的定理和性质。 第三环节:师生共析,证明定理 内容:已知:如图6-20(1),DE是△ABC的中位线. 求证:DE∥BC,DE=1/2BC 证明:如图6-20(2),延长DE到F,使 DE=EF,连接CF. 在△ADE和△CFE中 ∵AE=CE,∠1=∠2,DE=FE ∴△ADE≌△CFE ∴∠A=∠ECF,AD=CF ∴CF∥AB ∵BD=AD ∴BD=CF ∴四边形DBCF是平行四边形 ∴DF∥BC,DF=BC ∴DE∥BC,DE=1/2BC 目的:通过严密的几何证明将三角形中位线定理进行证明,由感性到理性,使学生经历定理的探究过程,积累数学活动的经验. 第四环节:灵活运用,自我检测 内容:如图,顺次连结四边形四条边的中点,所得的四边形有什么特点? 学生容易发现:四边形ABCD是平行四边形 已知:在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,如图4-94.求证:四边形EFGH是平行四边形. 分析: (1) 已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之间的关系.而四边形ABCD的对角线可以把四边形分成两个三角形,所以添加辅助线,连结AC或BD,构造“三角形的中位线”的基本图形. 练一练: 1. A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的 方法估测出了A,B间 的距离:在AB外选一点C,连结AC和BC,并分别 找出AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为什么 ? 2.已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长为 cm,面积为 cm2,为原三角形面积的 。 3.如图,在四边形ABCD中,E、F、G、H分别是AB、CD、 AC、BD的中点 。四边形EGFH是平行 四边形吗? 请证明你的结论。 目的:巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用. 第五环节:回顾小结,共同提升 本节课学了哪些内容? 第六环节:分层作业,拓展延伸 1、习题6.6 1, 2, 3题 2、完成《学考精练》对应练习 教学反思 本节课以探究三角形中位线的性质及证明为主线,开展教学活动。在三角形中位线定理探究过程中,学生先是通过动手画图、观察、测量、猜想出三角形中位线的性质,然后师生利用几何画板的测量和动态演示功能验证猜想的正确性,再引导学生尝试构造平行四边形进行证明。通过知识的形成过程,使学生体会探究数学问题的基本方法;通过定理的探究与证明,努力培养学生分析问题和解决问题的能力,提升学生数学的思维品质。 同时,问题是创造性思维的起点,是兴趣的激发点。好的问题情境,可以调动学生主动积极的探究。本课采用问题驱动,从概念的产生,到概念的辨析、再到定理的发现及证明,设计了一个个问题,层层递进,激活了学生的思维,促使学生不断的深入思考。 4. 多边形的内角和与外角和(一) 知识与技能目标 掌握多边形内角和定理,进一步- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文