八个无敌模型——全搞定空间几何的外接球和内切球问题.doc
《八个无敌模型——全搞定空间几何的外接球和内切球问题.doc》由会员分享,可在线阅读,更多相关《八个无敌模型——全搞定空间几何的外接球和内切球问题.doc(10页珍藏版)》请在咨信网上搜索。
1、(完整版)八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型搞定空间几何体的外接球与内切球文:付雨楼、段永建今天给大家带来8个求解立体几何内切球与外接球半径的模型,本文最开始源自付雨楼老师分享的模型,教研QQ群(群号:545423319)成员段永建老师进一步作图编辑优化分享。类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 方法:找三条两两垂直的线段,直接用公式,即,求出例1 (1)已知各顶点都在同一球面上的正四棱柱的高为,体积为,则这个球的表面积是( C )A B C D(2)若三棱锥的三个侧面两垂直,且侧棱长均为,则其外接球的表面积是 解:(1),选C; (2),(
2、3)在正三棱锥中,分别是棱的中点,且,若侧棱,则正三棱锥外接球的表面积是 。解:引理:正三棱锥的对棱互垂直。证明如下:如图(3)1,取的中点,连接,交于,连接,则是底面正三角形的中心,平面,,,平面,,同理:,,即正三棱锥的对棱互垂直,本题图如图(3)2, ,平面,,,平面,故三棱锥的三棱条侧棱两两互相垂直,即,正三棱锥外接球的表面积是(4)在四面体中,,则该四面体的外接球的表面积为( D ) (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为、,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为的等腰直角三角形和边长为的正方形,则该几何体外接球的体积为 解析:(4
3、)在中,,的外接球直径为,,,选D(5)三条侧棱两两生直,设三条侧棱长分别为(),则,(6),类型二、垂面模型(一条直线垂直于一个平面)1题设:如图5,平面解题步骤:第一步:将画在小圆面上,为小圆直径的一个端点,作小圆的直 径,连接,则必过球心;第二步:为的外心,所以平面,算出小圆的半径(三角形的外接圆直径算法:利用正弦定理,得),;第三步:利用勾股定理求三棱锥的外接球半径:;2题设:如图6,7,8,的射影是的外心三棱锥的三条侧棱相等三棱锥的底面在圆锥的底上,顶点点也是圆锥的顶点 解题步骤:第一步:确定球心的位置,取的外心,则三点共线;第二步:先算出小圆的半径,再算出棱锥的高(也是圆锥的高);
4、第三步:勾股定理:,解出方法二:小圆直径参与构造大圆。例2 一个几何体的三视图如右图所示,则该几何体外接球的表面积为( )CA B C D以上都不对解:选C,,, ,类型三、切瓜模型(两个平面互相垂直) 1题设:如图91,平面平面,且(即为小圆的直径)第一步:易知球心必是的外心,即的外接圆是大圆,先求出小圆的直径;第二步:在中,可根据正弦定理,求出2如图92,平面平面,且(即为小圆的直径) 3如图9-3,平面平面,且(即为小圆的直径),且的射影是的外心三棱锥的三条侧棱相等三棱的底面在圆锥的底上,顶点点也是圆锥的顶点解题步骤:第一步:确定球心的位置,取的外心,则三点共线;第二步:先算出小圆的半径
5、,再算出棱锥的高(也是圆锥的高);第三步:勾股定理:,解出4如图93,平面平面,且(即为小圆的直径),且,则利用勾股定理求三棱锥的外接球半径:;例3 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为,则该球的表面积为 。(2)正四棱锥的底面边长和各侧棱长都为,各顶点都在同一个球面上,则此球的体积为 解:(1)由正弦定理或找球心都可得,(2)方法一:找球心的位置,易知,,故球心在正方形的中心处,方法二:大圆是轴截面所的外接圆,即大圆是的外接圆,此处特殊,的斜边是球半径,(3)在三棱锥中,侧棱与底面所成的角为,则该三棱锥外接球的体积为( ) A B. C。 4 D.解:选D,圆锥在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八个 无敌 模型 搞定 空间 几何 外接 内切球 问题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。