利用导数解决不等式恒成立中参数问题--学案.doc
《利用导数解决不等式恒成立中参数问题--学案.doc》由会员分享,可在线阅读,更多相关《利用导数解决不等式恒成立中参数问题--学案.doc(10页珍藏版)》请在咨信网上搜索。
1、利用导数解决不等式恒成立中的参数问题一、单参数放在不等式上型:【例题1】(07全国理)设函数若对所有都有,求的取值范围解:令,则,(1)若,当时,故在上为增函数,时,即(2)若,方程的正根为,此时,若,则,故在该区间为减函数时,即,与题设相矛盾综上,满足条件的的取值范围是说明:上述方法是不等式放缩法【针对练习1】(10课标理)设函数,当时,求的取值范围解:【例题2】(07全国文)设函数在及时取得极值(1)求、的值;(2)若对于任意的,都有成立,求的取值范围解:(1),函数在及取得极值,则有,即,解得,(2)由(1)可知,当时,;当时,;当时,当时,取得极大值,又,则当时,的最大值为对于任意的,
2、有恒成立,解得或,因此的取值范围为最值法总结:区间给定情况下,转化为求函数在给定区间上的最值【针对练习2】(07重庆理)已知函数在处取得极值,其中、为常数(1)试确定、的值;(2)讨论函数的单调区间;(3)若对任意,不等式恒成立,求的取值范围解:【针对练习3】(10天津文)已知函数,其中若在区间上,恒成立,求的取值范围解:【例题3】(08湖南理)已知函数(1)求函数的单调区间;(2)若不等式对任意的都成立(其中是自然对数的底数),求的最大值解:(1)函数的定义域是,设则,令,则当时,在上为增函数,当时,在上为减函数在处取得极大值,而,函数在上为减函数于是当时,当时,当时,在上为增函数当时,在上
3、为减函数故函数的单调递增区间为,单调递减区间为(2)不等式等价于不等式,由知,设,则由(1)知,即,于是在上为减函数故函数在上的最小值为a的最大值为小结:解决此类问题用的是恒成立问题的变量分离的方法,此类方法的解题步骤是:分离变量;构造函数(非变量一方);对所构造的函数求最值(一般需要求导数,有时还需求两次导数);写出变量的取值范围【针对练习4】(10全国1理)已知,若,求的取值范围解:【针对练习5】若对所有的都有成立,求实数的取值范围解:二、单参数放在区间上型:【例题4】已知三次函数图象上点处的切线经过点,并且在处有极值(1)求的解析式;(2)当时,恒成立,求实数的取值范围解:(1),于是过
4、点处的切线为,又切线经过点,在处有极值,又,由解得:,(2),由得,当时,单调递增,;当时,单调递减,当时,在内不恒成立,当且仅当时,在内恒成立,的取值范围为【针对练习6】(07陕西文)已知在区间上是增函数,在区间,上是减函数,又(1)求的解析式;(2)若在区间上恒有成立,求的取值范围解:三、双参数中知道其中一个参数的范围型:【例题5】(07天津理)已知函数,其中,(1)讨论函数的单调性;(2)若对于任意的,不等式在上恒成立,求的取值范围解:(1)当时,显然这时在,上内是增函数当时,令,解得当变化时,的变化情况如下表:00极大值极小值在,内是增函数,在,内是减函数(2)法一:化归为最值由(2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用 导数 解决 不等式 成立 参数 问题
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。