反比例函数几何综合题型总结.doc
《反比例函数几何综合题型总结.doc》由会员分享,可在线阅读,更多相关《反比例函数几何综合题型总结.doc(7页珍藏版)》请在咨信网上搜索。
反比例函数与几何综合 模块一 反比例函数的几何意义 1.反比例函数的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为。如图二,所围成三角形的面积为 2.如图,四条双曲线、、、对应的函数解析式分别为:、、、,那么、、、的大小顺序为 ☞ 利用k的几何意义求参数的数值或比较参数大小 【例1】 如图,点在反比例函数的图像上,过点作轴于点,作轴于点,矩形的面积为9,则该反比例函数的解析式为 【巩固】反比例函数的图像如图所示,点是该函数图像上一点,垂直于轴,垂足是点,如果,则的值为( ) A. B. C. D. 【例2】 如图,在中,点是直线与双曲线在第一象限的交点,且,则的值是_____. 【例3】 如图,正比例函数和()的图像与反比例函数()的图像分别相交于点和点.若和的面积分别为和,则与的关系是( ) A. B.= C.< D.不能确定 【巩固】在函数()的图像上取三点、、,由这三点分别向轴、轴作垂线,设矩形、、的面积分别为、、,试比较三者大小. ☞ 反比例函数与方程的思想 【例4】 已知点在函数()的图像上,矩形的边在轴上,是对角线的 中点,函数()的图像经过、两点,若,求点的坐标. 模块二 反比例函数与面积的综合 1.若所求图形面积是规则图形,则可以按照相应图形的面积公式直接计算 2.若所求图形面积是不规则图形,则采用割补法 3.转化面积时,注意观察是否需要使用反比例函数的几何意义 ☞ 一般面积问题 【例5】 在平面直角坐标系中,函数(,常数)的图象经过点(1,2),(,),(),过点作轴的垂线,垂足为.若的面积为2,求点的坐标. 【巩固】如图,直线与反比例函数的图象相交于点、点,与轴交于点,其中点的坐标为,点的横坐标为. (1)试确定反比例函数的关系式; (2)求的面积. 【例6】 如图,点、是双曲线上的点,分别经过、两点向轴、轴作垂线段,若,则= 【巩固】如图,在反比例函数()的图象上,有点,,,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,,,求. 【例7】 如图,已知正方形的面积为9,点为坐标原点,点在轴上,点在轴上,点在函数(,)的图像上,点(,)为其双曲线上的任一点,过点分别作轴、轴的垂线,垂足分别为、,并设矩形和正方形不重合部分的面积为. ⑴求点的坐标和的值; ⑵当时,求点坐标; ⑶写出关于的函数关系式. 【巩固】如图,反比例函数的图象过矩形的顶点,、分别在轴、轴的正半轴上,. (1)设矩形的对角线交于点,求出点的坐标; (2)若直线平分矩形面积,求的值. 【巩固】如图,点、在反比例函数()的图象上,且点、的横坐标分别为和()轴,垂足为,的面积为. (1)求反比例函数的解析式; (2)若点(,),(,)也在反比例函数的图象上,试比较与的大小; (3)求的面积. 模块三 反比例函数与其他几何问题 ☞反比例函数与等腰三角形 1.涉及一般等腰三角形存在性的问题,注意需要分类讨论, 2.如果有等腰直角三角形或者等边三角形,注意考虑它的特殊性质 【例8】 如图,已知反比例函数的图象与一次函数的图象交于两点,. (1)求反比例函数和一次函数的解析式; (2)在轴上是否存在点,使为等腰三角形?若存在,请你直接写出点的坐标;若不存在,请说明理由. 【例9】 如图,、都是等腰直角三角形,点、在函数()的图像上,斜边、、都在轴上,求点的坐标. 课堂检测 1. 如图,已知一次函数的图象与反比例函数的图象交于、两点,且点的横坐标和点的纵坐标都是 ⑴求一次函数解析式 ⑵的面积 2. 如图,正方形,的顶点、、在坐标轴上,点在上,点、在函数的图象上,则点的坐标是 课后作业 1. 已知反比例函数和一次函数,其中一次函数的图象经过、两点 ⑴求反比例函数的解析式 ⑵如图,已知点在第一象限且同时在上述两个函数的图象上,求点坐标; ⑶利用⑵的结果,请问:在轴上是否存在点,使为等腰三角形?若存在,把符合条件的点坐标都求出来;若不存在,请说明理由。 Page 7 of 7- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 几何 综合 题型 总结
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文