同济版高等数学上册复习资料.ppt
《同济版高等数学上册复习资料.ppt》由会员分享,可在线阅读,更多相关《同济版高等数学上册复习资料.ppt(61页珍藏版)》请在咨信网上搜索。
1、高等数学高等数学(上上)总复习总复习第一部分 复习的重点及题型分析第二部分 高等数学(上)方法综述 .第一部分第一部分 复习的重点及题型分析复习重点复习重点三个基本计算三个基本计算 极限极限,导数导数,积分积分两个基本应用两个基本应用 导数应用导数应用,积分应用积分应用一个基本理论一个基本理论 有关中值的定理及应用有关中值的定理及应用.一一.三个基本计算三个基本计算 (约约 70%)1.极限的计算极限的计算(约约 24%)主要题型主要题型(1)利用基本方法求极限利用基本方法求极限函数的连续性函数的连续性;四则运算法则四则运算法则;极限存在准则极限存在准则;两个重要极限两个重要极限;等价无穷小替
2、换等价无穷小替换;洛必塔法则洛必塔法则.(2)利用特殊方法求极限利用特殊方法求极限导数定义导数定义;定积分定义定积分定义;微分中值定理微分中值定理;变限积分求导变限积分求导;讨论左右极限讨论左右极限.(3)无穷小量的比较无穷小量的比较.例题分析例题分析例例1.计算计算解解:解解:利用等价关系利用等价关系例例2.设设 f(x)处处连续处处连续,且且 f(2)=3,计算计算.解解:化为指数形式化为指数形式,利用利用例例3.计算计算解解:例例4.计算计算.例例5.计算计算解解:令令 例例6.计算计算解解:令令.例例7.计算计算解解:利用等价无穷小利用等价无穷小例例8.计算计算 解解:.例例9.求求解
3、解:令令则则原式原式=洛洛例例10.计算计算解解:直接用洛必塔直接用洛必塔法则不方便法则不方便利用等价无穷小利用等价无穷小.例例11.计算计算解解:利用微分中值定理利用微分中值定理例例12.计算计算解解:洛洛这是积分变量这是积分变量.例例13.求求原式原式=洛洛利用等价无穷小利用等价无穷小解解:.例例14.已知已知解解:对所给等式左边用洛必塔法则对所给等式左边用洛必塔法则,得得再利用再利用可知可知求求 a,b.2.导数和微分的计算导数和微分的计算 (约约 18%)主要题型主要题型(1)计算计算复合函数复合函数的导数和微分的导数和微分;(2)计算计算隐函数隐函数的导数和微分的导数和微分;(3)参
4、数方程参数方程求一阶、二阶导数求一阶、二阶导数;(4)用导数定义求用导数定义求特殊点特殊点的导数值的导数值;(5)计算计算 n 阶导数阶导数.(包括包括对数微分法对数微分法)例题分析例题分析.例例1.已知已知解法解法1.等式两边对等式两边对 x 求导求导,得得故故 解法解法2.等式两边取对数等式两边取对数,得得 两边对两边对 x 求导求导,得得 故故.例例2.已知已知解:解:两边取对数,得两边取对数,得两边对两边对 x 求导求导.例例3.证明下述函数在证明下述函数在 x=0 连续且可导连续且可导证证:因为因为又又 在在 x=0 连续且可导连续且可导.思考思考:若函数改为若函数改为 是否有同样的
5、是否有同样的 结论结论?.例例4.已知已知解解:,求求.例例5.设设 解解:.例例6.设设解解:.例例7.设设求解解:.例例8.求求解解:方法方法1.利用归纳法可证利用归纳法可证方法方法2.利用莱布尼兹求导公式利用莱布尼兹求导公式的的 n 阶导数阶导数.例例9.设设求求解解:.3.不定积分与定积分的计算不定积分与定积分的计算 (约约 28%)主要题型主要题型(1)利用基本积分方法计算不定积分利用基本积分方法计算不定积分;(2)利用基本积分方法及公式计算定积分利用基本积分方法及公式计算定积分;(3)利用简化技巧计算积分利用简化技巧计算积分;(4)广义积分的计算及收敛性判别广义积分的计算及收敛性判
6、别.例题分析例题分析.例例1.求求解解:令令令令例例2.求求解解:.例例3.求求解解:原式原式=.例例4.求求解解:例例5.讨论积分讨论积分解解:的敛散性的敛散性.发散发散可见原积分发散可见原积分发散.例例6.求求解解:奇函数奇函数偶函数偶函数例例7.已知已知解解:对所给等式两边求导对所给等式两边求导,得得求求利用利用“偶倍奇零偶倍奇零”,得得.例例8.设设,求求(P266 题题10)解解:令令则则.例例9.已知已知解解:由已知条件得由已知条件得求求.例例10.求求 解解:利用利用 P245 例例6(2),即即 .例例11.利用递推公式计算下列广义积分利用递推公式计算下列广义积分解解:(P25
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济 高等数学 上册 复习资料
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。