导数中证明不等式技巧+分类讨论.doc
《导数中证明不等式技巧+分类讨论.doc》由会员分享,可在线阅读,更多相关《导数中证明不等式技巧+分类讨论.doc(10页珍藏版)》请在咨信网上搜索。
1、(完整word)导数中证明不等式技巧+分类讨论导数中的不等式证明导数中不等式的证明是历年的高考中是一个永恒的话题,由于不等式证明的灵活性,多样性,该考点也备受命题者的青睐。本专题通过四个方面系统介绍了一些常规的不等式证明的手段命题角度1 构造函数命题角度2 放缩法命题角度3 切线法命题角度4 二元或多元不等式的证明思路命题角度5 函数凹凸性的应用基础自测 已知函数求的导函数;命题角度1 构造函数【典例1】(赣州市2018届高三摸底考试)已知函数,若曲线与曲线的一个公共点是,且在点处的切线互相垂直(1)求的值;(2)证明:当时,【解析】(1);(2)命题角度2 放缩法【典例2】(石家庄市2018
2、届高三下学期4月一模考试)已知函数,在处的切线方程为.(1)求;(2)若,证明:.【解析】(1),;(2)由(1)可知,由,可得 令,则,思考:错哪?【方法归纳】函数解析式中含有已知范围的参数,可以考虑借助于常识或已知的范围减少变量,对参数适当放缩达到证明的目标。【典例3】(成都市2018届高中毕业班二诊理科)已知函数。(1)当时,若关于的不等式恒成立,求的取值范围;(2)当时,证明:【解析】(1); (2)设数列的前项的和分别为,则由于,解得;同理,所以只需证明(文,右边选证)命题角度3 切线法【典例4】(2018届安徽省太和中学三模)已知函数.(1)求曲线在处的切线方程;(2)求证:当时,
3、.【解析】(1),由题设得, 所以曲线在处的切线方程为,即;【审题点津】1、切线放缩法值得认真探究,若第一小题是求曲线的切线方程,就要注意是否运用切线放缩法进行放缩解决问题。2、大小关系,往往与曲线的凹凸性相关。命题角度4 二元或多元不等式的解证思路【典例5】(2018年湖北省高三4月调考)设,其中,则的最小值为 【解析】由于表示点与点之间的距离,而点的轨迹是曲线,点的轨迹是曲线,如图所示,又点到直线的距离为,自然想到转化为动点到抛物线准线的距离,结合抛物线的概念可得 ,所以,当且仅当共线,又以为圆心作半径为的圆与相切,切点是,此时的公切线与半径垂直,,即,所以,故。正确答案为C。【典例6】(
4、2018年安庆市二模)已知函数,设求证:。【典例7。1】浙江2018,先看一个我们做过的题目22。 已知函数f(x)=lnx()若f(x)在x=x1,x2(x1x2)处导数相等,证明:f(x1)+f(x2)88ln2;()函数f(x)的导函数,由得,因为,所以由基本不等式得因为,所以由题意得设,则,所以x(0,16)16(16,+)0+2-4ln2所以g(x)在256,+)上单调递增,故,即【典例7】已知函数有两个极值点 (为自然对数的底数)。(1)求实数的取值范围;(2)求证:(本题是浙江高考的升级版,建议关注);【答案速得】函数有两个极值点实质上就是其导数有两个零点,亦即函数与直线有两个交
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 证明 不等式 技巧 分类 讨论
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。