2016高三一轮复习学案(理数)(人教)第10章概率与统计第3课时二项分布及其应用.doc
《2016高三一轮复习学案(理数)(人教)第10章概率与统计第3课时二项分布及其应用.doc》由会员分享,可在线阅读,更多相关《2016高三一轮复习学案(理数)(人教)第10章概率与统计第3课时二项分布及其应用.doc(12页珍藏版)》请在咨信网上搜索。
第3课时 二项分布及其应用 考纲 索引 1. 条件概率. 2. 事件的相互独立性. 3. 独立重复试验与二项分布. 课标 要求 1. 了解条件概率和两个事件相互独立的概念. 2. 理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. 知识梳理 1. 条件概率 一般地,设A,B为两个事件,且P(A)>0,称P(B|A)= 为在事件A发生的条件下事件B发生的条件概率.如果B和C是两个互斥事件,则P(B∪C|A)= . 2. 事件的相互独立性 设A,B为两个事件,如果P(AB)= ,称事件A与事件B相互独立.如果事件A与事件B相互独立,则A与 , 与B,与 也都相互独立. 3. 独立重复试验与二项分布 一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率是p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)= ,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.n次独立重复试验中事件A恰好发生k次可看成是个互斥事件的和,其中每一个事件都可看成是k个A事件与n-k个事件同时发生,只是发生的次序不同,其发生的概率都是 .因此n次独立重复实验中事件A恰好发生k次的概率为. 基础自测 指 点 迷 津 P(B|A)与P(AB)的区别 P(B|A)的值是P(AB)发生相对于事件A发生的概率的大小,而P(AB)是AB发生相对于原来的全体基本事件而言,一般P(B|A)≠P(AB). 考点透析 考向一 条件概率 例1 从1,2,3,4,5中任取两个不同的数,事件A=“取到2个数的和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于( ). 变式训练 1. 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格后,第二次再次取到不合格品的概率为 . 考向二 相互独立事件的概率 例2 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均末命中的概率为. (1)求乙投球的命中率p; (2)求甲投球2次,至少命中1次概率; (3)若甲、乙两人各投球2次,求共命中2次的概率. 【审题视点】 注意相互独立事件之间的概率互不影响. 【方法总结】1. 当从意义上不易判定两件事是否相互独立时,可运用公式P(AB)=P(A)P(B)计算判定.求相互独立事件同时发生的概率时,要搞清楚事件是否相互独立.若能把复杂事件分解为若干简单事件,同时注意运用对立事件可把问题简化. 2. 由两个事件相互独立的定义,可推广到三个成三个以上相互独立事件的概率计算公式,即若A1,A2,…,An,相互独立,则P(A1A2…An)=P(A1)P(A2)…P(An). 3. 在解题过程中,要明确事件中的“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.若能把相关事件正确地表示出来,同时注意使用逆向思考方法,常常能使问题的解答变得简便. 变式训练 2. (2013·陕西)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此1至5号中随机选3名歌手. (1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率; (2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望. 考向三 二项分布 例3 某小学三年级英语老师要求学生从星期一到星期四每天学习3个英语单词,每周星期五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同). (1)英语老师随机抽了4个单词进行检测,求至少有3个是后两天学习过的单词概率; (2)某学生对后两天学过的单词每个能默写对的概率为,对前两天所学过的单词每个能默写对的概率为;若老师从后三天所学单词中各抽取了一个进行检测,求该学生能默写对的单词数ξ的分布列. 【审题视点】 本题运用二项分布的知识解题. 【方法总结】1. 独立重复试验是相互独立事件的特例,注意二者的区别.独立重复试验必须具备如下的条件:(1)每次试验的条件完全相同,有关事件的概率不变;(2)各次试验结果互不影响,即每次试验相互独立;(3)每次试验只有两种结果,这两种可能结果的发生是对立的. 2. 判断某随机变量是否服从二项分布,主要看以下两点:(1)在每次试验中,试验的结果只有两个,即发生与不发生;(2)在每一次试验中,事件发生的概率相同.若满足,则在n次独立重复试验中就可把事件发生的次数作为随机变量,此时该随机变量服从二项分布.写二项分布时,首先确定X的取值,直接用公式P(X=k)计算概率即可. 变式训练 经典考题 典例 (2014·四川)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X,求X的分布列. (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? (3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比.分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 【解题指南】 本题考查了二项分布、随机变量的分布列以及数学期望;独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样. 【解析】 (1)X可能的取值为10,20,100,-200. 根据题意,有 真题体验 1. (2014·广东)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如下: 分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 8 0.32 (40,45] n1 f1 (45,50] n2 f2 (1)确定样本频率分布表中n1,n2,f1和f2的值; (2)根据上述频率分布表,画出样本频率分布直方图; (3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率. 2. (2014·湖北)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1)求未来4年中,至多有1年的年入流量超过120的概率; (2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系: 年入流量X 40<X<80 80≤X≤120 X>120 发电机最多 可运行台数 1 2 3 若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台? 参考答案与解析 知识梳理 基础自测 考点透析 变式训练 经典考题 真题体验- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 一轮 复习 人教 10 概率 统计 课时 二项分布 及其 应用
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文