金太阳广东省2022年高一上数学期末监测模拟试题含解析.doc
《金太阳广东省2022年高一上数学期末监测模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《金太阳广东省2022年高一上数学期末监测模拟试题含解析.doc(15页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.设扇形的周长为,面积为,则扇形的圆心角的弧度数是( ) A.1 B.2 C.3 D.4 2.定义在上的函数满足下列三个条件: ①; ②对任意,都有;③的图像关于轴对称.则下列结论中正确的是 A B. C. D. 3.已知实数,且,则的最小值是( ) A.6 B. C. D. 4.若关于的不等式的解集为,则函数在区间上的最小值为() A. B. C. D. 5.设集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},则AB中所有元素之积 A.-8 B.-16 C.8 D.16 6.已知函数,则在下列区间中必有零点的是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2) 7.若两个非零向量,满足,则与的夹角为() A. B. C. D. 8.定义在上的偶函数的图象关于直线对称,当时,.若方程且根的个数大于3,则实数的取值范围为() A. B. C. D. 9.已知函数,,若存在,使得,则实数的取值范围是() A. B. C. D. 10.点A,B,C,D在同一个球的球面上,,,若四面体ABCD体积的最大值为,则这个球的表面积为 A. B. C. D. 11.已知角的始边与轴非负半轴重合,终边过点,则() A.1 B.-1 C. D. 12.已知,则a,b,c的大小关系是( ) A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.过点P(4,2)并且在两坐标轴上截距相等的直线方程为(化为一般式)________. 14.若,则的最小值是___________,此时___________. 15.由直线上的任意一个点向圆引切线,则切线长的最小值为________. 16.已知函数是定义在上的奇函数,且,则________,________. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.在一般情况下,隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)满足关系式:.研究表明:当隧道内的车流密度达到辆/千米时造成堵塞,此时车流速度是千米/小时. (1)若车流速度不小于千米/小时,求车流密度的取值范围; (2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到辆/小时),并指出当车流量最大时的车流密度. 18.已知集合, (1)当时,求,; (2)若,求实数的取值范围 19.已知,,. (1)求,的值; (2)若,求值. 20.已知是定义在上的偶函数,当时,. (1)求在时的解析式; (2)若,在上恒成立,求实数的取值范围. 21.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的非负半轴重合,终边分别与单位圆交于,两点,且. (1)求的值; (2)若点的横坐标为,求的值. 22.已知函数 求函数的最小正周期与对称中心; 求函数的单调递增区间 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、B 【解析】根据扇形的周长为,面积为,得到,解得l,r,代入公式求解. 【详解】因为扇形的周长为,面积为, 所以, 解得 , 所以, 所以扇形的圆心角的弧度数是2 故选:B 2、D 【解析】先由,得函数周期为6,得到f(7)=f(1);再利用y=f(x+3)的图象关于y轴对称得到y=f(x)的图象关于x=3轴对称,进而得到f(1)=f(5);最后利用条件(2)得出结论 因为, 所以; 即函数周期为6,故; 又因为的图象关于y轴对称, 所以的图象关于x=3对称, 所以; 又对任意,都有; 所以 故选:D 考点:函数的奇偶性和单调性;函数的周期性. 3、B 【解析】构造,利用均值不等式即得解 【详解】, 当且仅当,即,时等号成立 故选:B 【点睛】本题考查了均值不等式在最值问题中的应用 ,考查了学生综合分析,转化划归,数学运算能力,属于中档题 4、A 【解析】由题意可知,关于的二次方程的两根分别为、,求出、的值,然后利用二次函数的基本性质可求得在区间上的最小值. 【详解】由题意可知,关于的二次方程的两根分别为、, 则,解得,则, 故当时,函数取得最小值,即. 故选:A. 5、C 【解析】∵集合A={-2,1},B={-1,2}, 定义集合AB={x|x=x1x2,x1∈A,x2∈B}, ∴AB={2,-4,-1}, 故AB中所有元素之积为:2×(-4)×(-1)=8 故选C 6、B 【解析】根据存在零点定理,看所给区间的端点值是否异号,,,,所以,那么函数的零点必在区间 考点:函数的零点 7、C 【解析】根据数量积的运算律得到,即可得解; 【详解】解:因为, 所以,即, 即,所以,即与的夹角为; 故选:C 8、D 【解析】由题设,可得解析式且为周期为4的函数,再将问题转化为与交点个数大于3个,讨论参数a判断交点个数,进而画出和的图象,应用数形结合法有符合题设,即可求范围. 【详解】由题设,,即, 所以是周期为4的函数, 若,则,故, 所以, 要使且根的个数大于3,即与交点个数大于3个,又恒过, 当时,在上,在上且在上递减,此时与只有一个交点, 所以. 综上,、的图象如下所示, 要使交点个数大于3个,则,可得. 故选:D 【点睛】关键点点睛:根据已知条件分析出的周期性,并求出上的解析式,将问题转化为两个函数的交点个数问题,结合对数函数的性质分析a的范围,最后根据交点个数情况,应用数形结合进一步缩小参数的范围. 9、D 【解析】根据条件求出两个函数在上的值域,结合若存在,使得,等价为两个集合有公共元素,然后根据集合关系进行求解即可 【详解】当时,,即,则的值域为[0,1], 当时,,则的值域为, 因为存在,使得, 则 若, 则或, 得或, 则当时,, 即实数a的取值范围是,A,B,C错,D对. 故选:D 10、D 【解析】根据题意,画出示意图,结合三角形面积及四面积体积的最值,判断顶点D的位置;然后利用勾股定理及球中的线段关系即可求得球的半径,进而求得球的面积 【详解】根据题意,画出示意图如下图所示 因为 ,所以三角形ABC为直角三角形,面积为 ,其所在圆面的小圆圆心在斜边AC的中点处,设该小圆的圆心为Q 因为三角形ABC的面积是定值,所以当四面体ABCD体积取得最大值时,高取得最大值 即当DQ⊥平面ABC时体积最大 所以 所以 设球心为O,球的半径为R,则 即 解方程得 所以球的表面积为 所以选D 【点睛】本题考查了空间几何体的外接球面积的求法,主要根据题意,正确画出图形并判断点的位置,属于难题 11、D 【解析】利用三角函数的坐标定义求出,即得解. 【详解】由题得. 所以. 故选:D 【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平. 12、B 【解析】根据指数函数的单调性、对数函数的单调性可得答案. 【详解】根据指数函数的单调性可知,, 即,即c>1, 由对数函数的单调性可知,即.所以c>a>b 故选:B 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、或 【解析】根据直线在两坐标轴上截距相等,则截距可能为也可能不为,再结合直线方程求法,即可对本题求解 【详解】由题意,设直线在两坐标轴上的截距均为, 当时,设直线方程为:, 因为直线过点,所以,即, 所以直线方程为:,即: , 当时,直线过点,且又过点, 所以直线的方程为,即:, 综上,直线的方程为:或. 故答案为:或 【点睛】本题考查直线方程的求解,考查能力辨析能力,应特别注意,截距相等,要分截距均为和均不为两种情况分别讨论. 14、 ①.1 ②.0 【解析】利用基本不等式求解. 【详解】因为, 所以, 当且仅当,即时,等号成立, 所以其最小值是1,此时0, 故答案为:1,0 15、 【解析】利用切线和点到圆心的距离关系即可得到结果. 【详解】圆心坐标,半径 要使切线长最小,则只需要点到圆心的距离最小, 此时最小值为圆心到直线的距离, 此时, 故答案为: 【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题. 16、 ①.1 ②.0 【解析】根据函数的周期性和奇偶性,结合已知条件,代值计算即可. 【详解】因为满足,且,且其为奇函数, 故; 又,故可得, 又函数是定义在上的奇函数,故,又, 故. 故答案为:1;0. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1);(2)最大值约为3250辆/小时,车流密度约为87辆/千米. 【解析】(1)把代入已知式求得,解不等式可得的范围 (2)由(1)求得函数,分别利用函数的单调性和基本不等式分段求得最大值,比较可得 【详解】解:(1)由题意知当(辆/千米)时,(千米/小时), 代入得,解得 所以 当时,,符合题意; 当时,令,解得,所以 综上, 答:若车流速度不小于40千米/小时,则车流密度的取值范围是. (2)由题意得, 当时,为增函数, 所以,等号当且仅当成立; 当时, 即,等号当且仅当,即成立. 综上,的最大值约为3250,此时约为87. 答:隧道内车流量的最大值约为3250辆/小时,此时车流密度约为87辆/千米. 【点睛】关键点点睛:本题考查函数模型的应用,对于已经给出函数模型的问题,关键是直接利用函数模型列出方程、不等式或利用函数性质求解 18、(1)或;;(2). 【解析】(1)时求出集合,,再根据集合的运算性质计算和; (2)根据,讨论和时的取值范围,从而得出实数的取值范围 【详解】解:(1)当时,, 或, 或; 又, ; (2), 当,即时,,满足题意; 当时,应满足,此时得; 综上,实数的取值范围是 【点睛】本题考查了集合的基本运算以及不等式解法问题,注意等价变形的应用,属于中档题 19、(1), (2) 【解析】(1)先求出,再由同角三角函数基本关系求解即可; (2)根据角的变换,再由两角差的余弦公式求解. 【小问1详解】 ∵,∴. ∵,∴, ∴,且,解得, ∴, 【小问2详解】 ∵,,∴, ∴, ∴ . 20、(1); (2). 【解析】(1)利用函数的奇偶性结合条件即得; (2)由题可知在上恒成立,利用函数的单调性可求,即得. 【小问1详解】 ∵当时,, ∴当时,, ∴,又是定义在上的偶函数, ∴, 故当时,; 【小问2详解】 由在上恒成立, ∴在上恒成立, ∴ 又∵与在上单调递增, ∴, ∴,解得或, ∴实数的取值范围为. 21、(1); (2). 【解析】(1)根据给定条件可得,再利用诱导公式化简计算作答. (2)由给定条件求出,再利用和角公式、倍角公式计算作答. 【小问1详解】 依题意,,所以. 【小问2详解】 因点的横坐标为,而点在第一象限,则点,即有, 于是得,, ,, 所以. 22、(1)最小正周期,对称中心为;(2) 【解析】直接利用三角函数关系式的恒等变变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期和对称中心;直接利用整体思想求出函数的单调递增区间 【详解】函数, , , 所以函数的最小正周期为, 令:,解得:, 所以函数的对称中心为 由于, 令:, 解得:, 所以函数的单调递增区间为 【点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金太阳 广东省 2022 年高 数学 期末 监测 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文