二次函数知识点、考点、典型试题集锦(带详细解析标准答案).doc
《二次函数知识点、考点、典型试题集锦(带详细解析标准答案).doc》由会员分享,可在线阅读,更多相关《二次函数知识点、考点、典型试题集锦(带详细解析标准答案).doc(26页珍藏版)》请在咨信网上搜索。
1、二次函数知识点、考点、典型试题集锦(带详细解析答案)一、中考要求:1经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系2能用表格、表达式、图象表示变量之间的二次函数关系,发展有条理的思考和语言表达能力;能根据具体问题,选取适当的方法表示变量之间的二次函数关系3会作二次函数的图象,并能根据图象对二次函数的性质进行分析,逐步积累研究函数性质的经验4能根据二次函数的表达式确定二次函数的开口方向,对称轴和顶点坐标5理解一元二次方程与二次函数的关系,并能利用二次函数的图象求一元二次方程的近似根6能利用二次函数解决实际问题,能对变量的变化趋势进行预测二、
2、中考卷研究(一)中考对知识点的考查:2009、2010年部分省市课标中考涉及的知识点如下表: 序号所考知识点比率1二次函数的图象和性质2.53%2二次函数的图象与系数的关系6%3二次函数解析式的求法2.510.5%4二次函数解决实际问题810%(二)中考热点: 二次函数知识是每年中考的重点知识,是每卷必考的主要内容,本章主要考查二次函数的概念、图象、性质及应用,这些知识是考查学生综合能力,解决实际问题的能力因此函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题三、中考命题趋势及复习对策二次函数是数学中最重要的内容之一,题量约占全部试题的1015,分值约占总分的1015,题型
3、既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查学生的计算能力,逻辑思维能力,空间想象能力和创造能力。针对中考命题趋势,在复习时应首先理解二次函数的概念,掌握其性质和图象,还应注重其应用以及二次函数与几何图形的联系,此外对各种函数的综合应用还应多加练习.(I)考点突破考点1:二次函数的图象和性质一、考点讲解:1二次函数的定义:形如(a0,a,b,c为常数)的函数为二次函数2二次函数的图象及性质: 二次函数y=ax2 (a0)的图象是
4、一条抛物线,其顶点是原点,对称轴是y轴;当a0时,抛物线开口向上,顶点是最低点;当a0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大y=a(xh)2k的对称轴是x=h,顶点坐标是(h,k)。 二次函数的图象是一条抛物线顶点为(,),对称轴x=;当a0时,抛物线开口向上,图象有最低点,且x,y随x的增大而增大,x,y随x的增大而减小;当a0时,抛物线开口向下,图象有最高点,且x,y随x的增大而减小,x,y随x的增大而增大 注意:分析二次函数增减性时,一定要以对称轴为分界线。首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。 解题小诀窍:二次函数上两点坐标
5、为(),(),即两点纵坐标相等,则其对称轴为直线。 当a0时,当x=时,函数有最小值;当a0时,当 x=时,函数有最大值。3图象的平移:将二次函数y=ax2 (a0)的图象进行平移,可得到y=ax2c,y=a(xh)2,y=a(xh)2k的图象 将y=ax2的图象向上(c0)或向下(c 0)平移|c|个单位,即可得到y=ax2c的图象其顶点是(0,c),形状、对称轴、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向右(h0)平移|h|个单位,即可得到y=a(xh)2的图象其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0
6、)或向下(k0)平移|k|个单位,即可得到y=a(xh)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 注意:二次函数y=ax2 与y=ax2 的图像关于x轴对称。平移的简记口诀是“上加下减,左加右减”。一、 经典考题剖析: 【考题】.抛物线y=4(x+2)2+5的对称轴是_【考题2】函数y= x24的图象与y 轴的交点坐标是( ) A.(2,0) B.(2,0) C.(0,4) D.(0,4)【考题】在平面直角坐标系内,如果将抛物线向右平移2个单位,向下平移3个单位,平移后二次函数的关系式是() 答案:。【考题】(2009、贵阳)已知抛物线 的部
7、分图象(如图1-2-1),图象再次与x轴相交时的坐标是( ) A(5,0) B.(6,0) C(7,0) D.(8,0)解:C 点拨:由,可知其对称轴为x=4,而图象与x轴已交于(1,0),则与x轴的另一交点为(7,0)。参考解题小诀窍。【考题】(深圳)二次函数yO图像如图所示,若点(,),(,)是它的图像上两点,则与的大小关系是()不能确定答案:。点,均在对称轴右侧。三、针对性训练:( 分钟) (答案: ) 1已知直线y=x与二次函数y=ax2 2x1的图象的一个交点 M的横标为1,则a的值为( ) A、2 B、1 C、3 D、42已知反比例函数y= 的图象在每个象限内y随x的增大而增大,则
8、二次函数y=2kx2 x+k2的图象大致为图123中的( ) 4抛物线y=x2x5的顶点坐标是( ) A(2,1) B(2,1) C(2,l) D(2,1)二次函数 y=2(x3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A开口向下,对称轴x=3,顶点坐标为(3,5) B开口向下,对称轴x3,顶点坐标为(3,5) C开口向上,对称轴x=3,顶点坐标为(3,5) D开口向上,对称轴x=3,顶点(3,5)二次函数的图象上有两点(3,8)和(5,8),则此拋物线的对称轴是( ) A B. C. D. 7在平面直角坐标系内,如果将抛物线 向右平移3个单位,向下平移4个单位,平移后二次函数的
9、关系式是( ) 8.已知,点A(1,),B(,),C(5,)在函数的图像上,则,的大小关系是() A . B. C. D. 9已知二次函数(a0)与一次函数y=kx+m(k0)的图象相交于点A(2,4),B(8,2),如图127所示,能使y1y2成立的x取值范围是_3x=1 10.(襄樊)抛物线的图像如图所示,则抛物线的解析式为_。11.若二次函数的顶点坐标是(2,1),则b=_,c=_。12直线y=x+2与抛物线y=x2 +2x的交点坐标为_13读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化 例如:由抛物线,有y=,所以抛物线的顶点坐标为(
10、m,2m1),即。 当m的值变化时,x、y的值随之变化,因而y值也随x值的变化而变化,将代人,得y=2x1l可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足y=2x1,回答问题:(1)在上述过程中,由到所用的数学方法是_,其中运用了_公式,由得到所用的数学方法是_;(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标与横坐标x之间的关系式_.14抛物线经过第一、三、四象限,则抛物线的顶点必在( ) A第一象限 B第二象限C第三象限 D第四象限15 已知M、N两点关于 y轴对称,且点 M在双曲线 y= 上,点 N在直线上,设点M的坐标为(a,b),则抛物线y=abx2+(ab)x的顶
11、点坐标为_.16当b0时,一次函数y=ax+b和二次函数y=ax2bxc在同一坐标系中的图象大致是图129中的( )考点2:二次函数的图象与系数的关系一、考点讲解:1、a的符号:a的符号由抛物线的开口方向决定抛物线开口向上,则a0;抛物线开口向下,则a02、b的符号由对称轴决定,若对称轴是y轴,则b=0;若抛物线的顶点在y轴左侧,顶点的横坐标0,即0,则a、b为同号;若抛物线的顶点在y轴右侧,顶点的横坐标0,即0则a、b异号间“左同右异”3c的符号:c的符号由抛物线与y轴的交点位置确定若抛物线交y轴于正半,则c0,抛物线交y轴于负半轴则c0;若抛物线过原点,则c=04的符号:的符号由抛物线与x
12、轴的交点个数决定若抛物线与x轴只有一个交点,则=0;有两个交点,则0没有交点,则0 5、a+b+c与ab+c的符号:a+b+c是抛物线(a0)上的点(1,a+b+c)的纵坐标,ab+c是抛物线(a0)上的点(1,abc)的纵坐标根据点的位置,可确定它们的符号.二、经典考题剖析: 【考题1】(2009、潍坊)已知二次函数的图象如图 l22所示,则a、b、c满足( ) Aa0,b0,c0 Ba0,b0,c0Ca0,b0,c0 Da0,b0,c0解:A 点拨:由抛物线开口向下可知a0;与y轴交于正半轴可知c0;抛物线的对称轴在y轴左侧,可知 0,则b0故选A 【考题2】(2009、天津)已知二次函数
13、 (a0)且a0,ab+c0,则一定有( ) Ab24ac0 Bb24ac0 Cb24ac0 Db24ac0 解:A 点拨:a0,抛物线开口向下,经过(1,ab+c)点,因为ab+c0,所以(1,ab+c)在第二象限,所以抛物线与x轴有两个交点,所以b24ac0,故选A 【考题】(2009、重庆)二次函数的图象如图1210,则点(b,)在( ) A第一象限B第二象限 C第三象限 D第四象限 解: 点拨:抛物线开口向下,所以a 0, 顶点在y轴右侧,a、b为异号,所以b0,抛物线交y轴于正半轴,所以c0,所以0,所以 M在第四象限三、针对性训练:( 60分钟) 1已知函数的图象如图1211所示,
14、给出下列关于系数a、b、c的不等式:a0,b0,c0,2ab 0,abc0其中正确的不等式的序号为_-2已知抛物线与x轴交点的横坐标为1,则ac=_.3抛物线中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为_4已知二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数解析式: _.5抛物线如图1212 所示,则它关于y轴对称的抛物线的解析式是_.6若抛物线过点(1,0)且其解析式中二次项系数为1,则它的解析式为_(任写一个)7已知二次函数的图象与x轴交于点(2,0),(x1,0)且1x12,与y轴正半轴的交点连点(0,2)的下方,下列结论:ab0;2a+c
15、0;4a+c 0,2ab+l0其中的有正确的结论是(填写序号)_8若二次函数的图象如图,则ac_0(“”“”或“=”) 第8题图9二次函数的图象如图 1214所示,则下列关于a、b、c间的关系判断正确的是() Aab0 B、bc0 Ca+bc0 Dab十c010抛物线(a0)的顶点在x轴上方的条件是( ) Ab24ac0 Bb24ac 0 Cb24ac0 D c 011 二次函数y=3x2;y= x2;y= x2的图象的开口大小顺序应为( ) A(1)(2)(3)B(1)(3)(2)C(2)(3)(1)D(2)(1)(3)考点3:二次函数解析式求法一、考点讲解:1二次函数的三种表示方法: 表格
16、法:可以清楚、直接地表示出变量之间的数值对应关系; 图象法:可以直观地表示出函数的变化过程和变化趋势; 表达式:可以比较全面、完整、简洁地表示出变量之间的关系2二次函数表达式的求法: 一般式法:若已知抛物线上三点坐标,可利用待定系数法求得;将已知的三个点的坐标分别代入解析式,得到一个三元一次方程组,解这个方程组即可。 顶点式法:若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:其中顶点为(h,k),对称轴为直线x=h; 交点式法:若已知抛物线与x轴的交点坐标或交点的横坐标,则可采用交点式:,其中与x轴的交点坐标为(x1,0),(x2,0)。 解题小诀窍:在求二次函数解析式时,要灵活根据题目给
17、出的条件来设解析式。例如,已知二次函数的顶点在坐标原点可设;已知顶点(0,c),即在y轴上时可设;已知顶点(h,0)即顶点在x轴上可设. 注意:当涉及面积周长的问题时,一定要注意自变量的取值范围。二、经典考题剖析:【考题1】(2009、长沙)如图1216所示,要在底边BC=160cm,高AD=120cm的ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M,此时。(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;(2)当x为何值时,矩形EFGH的面积S最大?(3)以面积最大的矩形EFGH为侧面,围成一个圆柱形的铁桶,怎样围
18、时,才能使铁桶的体积较大?请说明理由(注:围铁桶侧面时,接缝无重叠,底面另用材料配备)。 解:AHG ABC,所以,所以=,所以 矩形的面积S=xy, S=所以x=60cm, S最大=48002. 围圆柱形铁桶有两种情况:当x=60时, 第一种情况:以矩形EFGH的宽HE=60cm作铁桶的高,长HG=80cm作铁桶的底面周长,则底面半径R= 第二种情况:以矩形EFGH的长HG=80cm作铁桶的高,宽HE=60cm作铁桶的底面周长,则底面半径R=. 因为V1V2,所以以矩形EFGH的宽HE=60cm作铁桶的高,长HG=80cm作铁桶的底面周长围成的圆柱形铁桶的体积较大 点拨:作铁桶时要分两种情况
19、考虑,通过比较得到哪种情况围成的铁桶的体积大 【考题2】在直角坐标系中,AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把AOB绕O点按逆时针方向旋转900到COD。(1)求C,D两点的坐标;(2)求经过C,D,B三点的抛物线解析式。 解:(1)C点(2,0),D点(0,4)。 (2)设二次函数解析式为,由点C,B两点的坐标,得。将点D(0,4)代入得a=,即二次函数解析式为。【考题3】如图,抛物线的对称轴是直线x=1,它与x轴交于A,B两点,与y轴交于C点。点A,C的坐标分别是(1,0),(0,)。(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点
20、,求ABP的面积的最大值。 解:(1)已知抛物线的对称轴为x=1,设抛物线解析式为,将点A(1,0),C(0,)代入解析式,得 解得, , 即。 (2)A点横坐标为1,对称轴为x=1,则点B的横坐标为3,设点P横坐标是m(1m3),则点P纵坐标。(0) 当m=1时,S有最大值,为4。 解题小诀窍:当二次函数图像上出现动点时,可以先设出动点的横坐标,然后利用二次函数的解析式将动点的纵坐标表示出来,如上面点P的纵坐标的表示方法。 【考题4】(2009、南宁)目前,国内最大跨江的钢管混凝土拱桥永和大桥,是南宁市又一标志性建筑,其拱形图形为抛物线的一部分(如图 1218),在正常情况下,位于水面上的桥
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 知识点 考点 典型 试题 集锦 详细 解析 标准答案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。