数学物理方程公式小结.doc
《数学物理方程公式小结.doc》由会员分享,可在线阅读,更多相关《数学物理方程公式小结.doc(10页珍藏版)》请在咨信网上搜索。
1、无限长弦的一般强迫振动定解问题解三维空间的自由振动的波动方程定解问题在球坐标变换 (r=at)无界三维空间自由振动的泊松公式 二维空间的自由振动的波动方程定解问题傅立叶变换 基本性质线性性质 微分性质 若则 拉普拉斯变换 基本性质 三个格林公式高斯公式:设空间区域V是由分片光滑的闭曲面S所围成,函数P,Q,R在V上具有一阶连续偏导数,则:或第一格林公式:设u(x,y,z),V(x,y,z)在SSV上有一阶连续偏导数,它们在V中有二阶偏导,则:第二格林公式:设u(x,y,z),V(x,y,z)在SSV上有一阶连续偏导数,它们在V中有二阶偏导,则:第三格林公式设M0,M是V中的点,v(M)=1/r
2、MM0, u(x,y,z)满足第一格林公式条件,则有: 定理1:泊松方程洛平问题 的解为: 推论1:拉氏方程洛平问题 的解为: 调和函数1、定义:如果函数u(x,y,z)满足:(1) 在具有二阶连续偏导数;(2) 称u为V上的调和函数。 2、调和函数的性质。 性质1 设 u(x,y,z) 是区域 V 上的调和函数,则有 推论2:拉氏牛曼问题(牛曼问题解不稳定没有得到公式解)有解的充分必要条件是:性质2 设u(x,y,z) 是区域V上的调和函数,则有 :性质3 : 设u(x,y,z)是区域V 上的调和函数,则在球心的值等于它在球面上的算术平均值,即: 其中SR是以M0为球心,R为半径的球面 三维
3、空间中狄氏问题格林函数 泊松方程狄氏问题为:其中:如果G(M,M0)满足: 则可得泊松方程狄氏解定理定理:泊松方程狄氏解为: 其中G(M,M0)满足: 推论:拉氏方程狄氏解为:平面中的三个格林公式首先证明一个定理: 设闭区域D由分段光滑的曲线L围成,且f(x,y)在D上有二阶连续偏导数,n为曲线的外法线方向,则:(1) 第一格林公式设闭区域D由分段光滑的曲线L围成,且u(x,y),v(x,y)在D上有二阶连续偏导数,n为曲线的外法线方向。 (2) 第二格林公式(3) 第三格林公式:设闭区域D由分段光滑的曲线L围成,且u(x,y)在D上有二阶连续偏导数,n为曲线的外法线方向,令: 定理:平面泊松
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 物理 方程 公式 小结
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。