选修2-13.1空间向量及其运算.doc
《选修2-13.1空间向量及其运算.doc》由会员分享,可在线阅读,更多相关《选修2-13.1空间向量及其运算.doc(7页珍藏版)》请在咨信网上搜索。
1、个人收集整理 勿做商业用途第一课时: 3.1。1 空间向量及其加减与数乘运算教学要求:理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题 教学重点:空间向量的加减与数乘运算及运算律教学难点:由平面向量类比学习空间向量教学过程:一、复习引入1、有关平面向量的一些知识:什么叫做向量?向量是怎样表示的呢?既有大小又有方向的量叫向量向量的表示方法有:用有向线段表示;用字母、等表示;用有向线段的起点与终点字母:长度相等且方向相同的向量叫相等向量。2. 向量的加减以及数乘向量运算:向量的加法:向量的减法:实数
2、与向量的积:实数与向量的积是一个向量,记作,其长度和方向规定如下:|(2)当0时,与同向; 当0时,与反向; 当0时,.3. 向量的运算运算律:加法交换律:4. 三个力都是200N,相互间夹角为60,能否提起一块重500N的钢板?二、新课讲授1。 定义:我们把空间中具有大小和方向的量叫做空间向量向量的大小叫做向量的长度或模。 举例? 表示?(用有向线段表示) 记法? 零向量? 单位向量? 相反向量? 讨论:相等向量? 同向且等长的有向线段表示同一向量或相等的向量 讨论:空间任意两个向量是否共面?2. 空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:=+,(指向被减向量), (请学生说
3、说数乘运算的定义?)3. 空间向量的加法与数乘向量的运算律加法交换律: + = + ;加法结合律:( + ) + =+ ( + );数乘分配律:( + ) = +;数乘结合律:(u) =(u) 4. 推广:;空间平行四边形法则5. 出示例:已知平行六面体(底面是平行四边形的四棱柱)(如图),化简下列向量表达式,并标出化简结果的向量: ; 师生共练 变式训练6. 练习:课本P92 7。 小结:概念、运算、思想(由平面向量类比学习空间向量)三、巩固练习: 作业:P106 A组 1、2题.第二课时: 3。1.2 空间向量的数乘运算(二)教学要求:了解共线或平行向量的概念,掌握表示方法;理解共线向量定
4、理及其推论;掌握空间直线的向量参数方程;会运用上述知识解决立体几何中有关的简单问题教学重点:空间直线、平面的向量参数方程及线段中点的向量公式教学过程:一、复习引入1。 回顾平面向量向量知识:平行向量或共线向量?怎样判定向量与非零向量是否共线?方向相同或者相反的非零向量叫做平行向量由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量向量与非零向量共线的充要条件是有且只有一个实数,使。称平面向量共线定理,二、新课讲授1.定义:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于记作/2关于空间共线向量的结论有共线向量定理及其
5、推论: 共线向量定理:空间任意两个向量、(0),/的充要条件是存在实数,使.理解:上述定理包含两个方面:性质定理:若(0),则有,其中是唯一确定的实数.判断定理:若存在唯一实数,使(0),则有(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上)。对于确定的和,表示空间与平行或共线,长度为 |,当0时与同向,当0时与反向的所有向量.3。 推论:如果l为经过已知点A且平行于已知非零向量的直线,那么对于任意一点O,点P在直线l上的充要条件是存在实数t满足等式 其中向量叫做直线l的方向向量.推论证明如下:l/a ,对于l上任意一点P,存在唯一的实数t,使得() 又对于空间任意一点O,有,
6、, 若在l上取,则有(*)又 当时,理解: 表达式和都叫做空间直线的向量参数表示式,式是线段的中点公式事实上,表达式()和(*)既是表达式和的基础,也是直线参数方程的表达形式 表达式和三角形法则得出的,可以据此记忆这两个公式OABCD 推论一般用于解决空间中的三点共线问题的表示或判定空间向量共线(平行)的定义、共线向量定理与平面向量完全相同,是平面向量相关知识的推广4. 出示例1:用向量方法证明顺次连接空间四边形四边中点的四边形是平行四边形。 ( 分析:如何用向量方法来证明?)5. 出示例2:如图O是空间任意一点,C、D是线段AB的三等分点,分别用、表示、。三、巩固练习: 作业:第三课时: 3
7、。1.2 空间向量的数乘运算(三)教学要求:了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;理解共面向量定理及其推论;掌握点在已知平面内的充要条件;会用上述知识解决立几中有关的简单问题教学重点:点在已知平面内的充要条件教学难点:对点在已知平面内的充要条件的理解与运用教学过程:一、复习引入1。 空间向量的有关知识-共线或平行向量的概念、共线向量定理及其推论以及空间直线的向量表示式、中点公式2. 必修平面向量,平面向量的一个重要定理-平面向量基本定理:如果e1、e2是同一平面内两个不共线的向量,那么对这一平面内的任意一个向量a,有且只有一对实数1、2,使a1e12e2。其中不共线
8、向量e1、e2叫做表示这一平面内所有向量的一组基底二、新课讲授1. 定义:如果表示空间向量a的有向线段所在直线与已知平面平行或在平面内,则称向量a平行于平面,记作a/向量与平面平行,向量所在的直线可以在平面内,而直线与平面平行时两者是没有公共点的2. 定义:平行于同一平面的向量叫做共面向量共面向量不一定是在同一平面内的,但可以平移到同一平面内3. 讨论:空间中任意三个向量一定是共面向量吗?请举例说明结论:空间中的任意三个向量不一定是共面向量例如:对于空间四边形ABCD,、这三个向量就不是共面向量4. 讨论:空间三个向量具备怎样的条件时才是共面向量呢?5。 得出共面向量定理:如果两个向量a、b不
9、共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使得 p= xa+yb 证明:必要性:由已知,两个向量a、b不共线 向量p与向量a、b共面 由平面向量基本定理得:存在一对有序实数对x,y,使得 p= xa+yb充分性:如图,xa,yb分别与a、b共线, xa,yb都在a、b确定的平面内又xa+yb是以|xa、yb为邻边的平行四边形的一条对角线所表示的向量,并且此平行四边形在a、b确定的平面内, p= xa+yb在a、b确定的平面内,即向量p与向量a、b共面说明:当p、a、b都是非零向量时,共面向量定理实际上也是p、a、b所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 13.1 空间 向量 及其 运算
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。