山东省肥城市安站中学八级数学上册第一章《轴对称与轴对称图形》复习导学案.doc
《山东省肥城市安站中学八级数学上册第一章《轴对称与轴对称图形》复习导学案.doc》由会员分享,可在线阅读,更多相关《山东省肥城市安站中学八级数学上册第一章《轴对称与轴对称图形》复习导学案.doc(6页珍藏版)》请在咨信网上搜索。
第一章 轴对称与轴对称图形复习课 学习目标: 1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。 2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。 3.掌握线段的垂直平分线、角的平分线的性质及应用。 4.理解等腰三角形的性质并能够简单应用。 5.能够按要求做出简单的平面图形的轴对称图形,初步体会从对称的角度欣赏和设计简单的轴对称图案。 重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用。 难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用,镜面对称下图形的变化。 导学过程: 课前预习与导学 欣赏下面几张美丽的图片,回顾本单元的知识结构 1.轴对称图形: 如果一个图形沿着一条直线 ,两侧的图形能够 ,这个图形就是轴对称图形。折痕所在的这条直线叫做______。图形上能够重合的点叫 。 分别在上面图形中画出它们的对称轴。 2.轴对称:欣赏下面几幅图片,并完成问题。 如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成 ,这条直线叫做 。两个图形中的对应点叫 。如图,写出一对对称点是 。 3.轴对称的性质 上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN ,图中相等的线段有: ,相等的角有: 。 可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴 ,对应线段 ,对应角 。 4.欣赏下面的图片,完成对镜面对称的回顾。 一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗? 在照镜子时,镜子外的物体和镜子内的成像 不变, 发生相反变化。 5.线段垂直平分线的性质 线段垂直平分线上的点到 的距离相等。 6.角的平分线的性质 角的平分线的性质上的点到 的距离相等。 7.等腰三角形的性质 等腰三角形是 图形,它的对称轴是 , 等腰三角形的两个底角 , 互相重合。 等边三角形的各角都是 ,有 条对称轴。 课上探究 激情导入:送一句话给全体同学 对称是一种思想,通过它,人们毕生追求,并创造次序、美丽和完善…… ------赫尔曼·外尔 一、独立完成 发现问题(自主学习) 1.自主梳理 (一)轴对称和轴对称图形的联系和区别 区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是 个图形的位置关系。 而轴对称图形是指 个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的 个图形。 联系: 如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。 如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。 (二)线段垂直平分线的性质应用:三角形三边垂直平分线的交点到 距离相等。 (三)角的平分线的性质应用:三角形三个内角平分线的交点到 距离相等。 (四)等腰三角形的三线合一性是指: 。 2.自我诊断: (1)下列说法中,正确的个数是( ) ①轴对称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言。 (A)1个 (B)2个 (C)3个 (D)4个 (2)轴对称图形的对称轴的条数( ) (A)只有一条 (B)2条 (C)3条 (D)至少一条 (3)下列图形中,不是轴对称图形的是( ) (A)两条相交直线 (B)线段 (C)有公共端点的两条相等线段 (D)有公共端点的两条不相等线段 (4)下列图案是几种名车的标志,在这几个图案中是轴对称图形的共有( ) 丰田 三菱 雪佛兰 雪铁龙 (A)1个 (B)2个 (C)3个 (D)4 (5)下列图形是不是轴对称图形?如果是轴对称图形的,说出对称轴的条数. (6)小强站在镜前,从镜中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是__________。 (7)等腰三角形两腰分别为3和7,那么它的周长为( ) (A)10 (B)13 (C)17 (D)13或17 (8)到三角形三个顶点距离相等的是( ) (A)三边高线的交点 (B)三条中线的交点 (C)三条垂直平分线的交点(D)三条内角平分线的交点 (9)等腰△ABC中∠A=80°,若∠A是顶角,则∠B=______°;若∠B是顶角,则∠B=_______°;若∠C是顶角,则∠B=________° (10)△ABC中,AB=AC,点D在AC边上,且 BD=BC=AD,则∠A的度数为( ) (A)300 (B)360 (C)450 (D)700 (11)如果△ABC与△A/B/C/关于直线MN对称,且∠A=500,∠B/=700,那么∠C/ =____。 自我总结: 你对以上问题感到还有疑惑的是: , 是哪个知识点没有掌握好呢? 。 二、合作探究 解决问题 小组合作解决以下问题: (12)如图:由四个小正方形组成的图形中,请你添加一个小正方形, 使它成为一个轴对称图形 (13)画出△ABC关于直线l的轴对称图形△A`B`C` (14)如图,A、B是安达公路边两个新建的居民小区,某镇需在公路边增加一个公共汽车站,这个公共汽车站建在什么位置,才能使两个小区到车站的路程一样,找出汽车站的位置并说明理由。 (15)哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称性。 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (16)数的运算中会有一些有趣的对称形式,如12×231=132×21,仿照这一形式,写出下列等式,并演算:12×462= ,18×891= 。 自我反思 在以上问题中,你对那个问题巩固的最扎实?那个问题你是接受了同学的帮助?你有哪些新的收获? 。 三、精讲点拨 完善问题 (17)在矩形ABCD中,将△ABC绕AC对折至△AEC 位置,CE与AD交于点F,如图.试说明EF=DF. (18)如图,己知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=10cm,∠A=49º,求△BCE的周长和∠EBC的度数. 我的收获:说明两条线段相等可以运用的方法主要是:1. 2. 。 四、有效训练 归纳提升 (19)在△ABC中,AB=AC,BC=5cm,作AB的中垂线交另一腰AC于D, 连结BD,如果△BCD的周长是17cm,则腰长为( ) (A)12cm (B)6cm (C)7cm (D)5cm (20)已知∠AOB=400,OM平分∠AOB,MA⊥OA于A,MB⊥OB于B,则∠MAB的度数为( ) (A)500 (B)400 (C)300 (D)200 (21)△ABC中,BC=10,边BC的垂直平分线分别交AB、AC于点E、F,BE=7,△BCE的周长为_____。 (22)已知△ABC中∠BAC=140°,AB、AC的垂直平分线分别交BC于E、F,你能求出∠EAF的度数吗? (24)已知直线及其两侧两点A、B,如图所示. ①在直线上求一点P,使PA=PB; ②在直线上求一点Q,使平分∠AQB. (25)在课外活动中,小明发明了一个在直角三角形中画锐角的平分线的方法,他的方法是:如图所示,在斜边AB上取一点E,使BE=BC,过点E作ED⊥AB,交AC于D,那么BD就是∠ABC的平分线,你认为对吗?为什么? 课末反思 本节课我的收获主要有: 。 我还在 方面存在不足,我打算 弥补。 课末检测 1.下列轴对称图形中,对称轴最多的是( ) (A)等腰直角三角形 (B)线段 (C)正方形 (D)圆 2.下列图形中不是轴对称图形的有( ) (A)1个 (B)2个 (C)3个 (D)4个 3.以下汽车标志中,和其他三个不同的是( ) (A) (B) (C) (D) 4.以下国旗图案中,有一条对称轴的是( ) 加拿大 摩洛哥 约 旦 英 国 肯尼亚 (A)2个 (B)3个 (C)4个 (D)5个 5.画出下面每个轴对称图形的对称轴 6.画出下图中△ABC关于直线MN的轴对称图形。 7.“西气东输”是造福子孙后代的创世工程,现有两条高速公路l1、l2和两个城镇(如上右图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置。(保留画图痕迹,不写画法) 8.在Rt△ABC中,∠C=900,BD平分∠ABC交AC于点D,DE垂直平分线段AB, ①试找出图中相等的线段,并说明理由。②若DE=1cm,BD=2cm,求AC的长。 课外拓展: 用两个圆:○、○,两个三角形:△、△和两条线段:∣、∣,拼出至少两个对称图形(画在下列方框内),并加上一句贴切诙谐解说词。 解说词: 解说词:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称与轴对称图形 山东省 肥城市 中学 级数 上册 第一章 轴对称 图形 复习 导学案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文