第九章《不等式与不等式组》全章教案(共6份).doc
《第九章《不等式与不等式组》全章教案(共6份).doc》由会员分享,可在线阅读,更多相关《第九章《不等式与不等式组》全章教案(共6份).doc(21页珍藏版)》请在咨信网上搜索。
(总第三七课时)9.1.1 不等式及其解集 年级 七年级 课题 9.1.1 不等式及其解集 课型 新授 教 学 目 标 知识 技能 1、 感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义; 2、 通过解决简单的实际问题,使学生自发地寻找不等式的解; 3、 会把不等式的解集正确地表示到数轴上 过程 方法 经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 情感 态度 通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 教学重点 正确理解不等式、 不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 教学难点 正确理解不等式解集的意义。 课前指南 教学方法 启发、讨论、探究 教学手段 多媒体 教 学 过 程 设 计 问题与情境设计 师生活动设计 情 景 引 入 两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢? 教师操作多媒体演示学生观察思考 通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣,从而导入新课。 自 主 探 究 自 主 探 究 自 主 探 究 探究活动一 (一)不等式、一元一次不等式的概念 问题1 一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗? 问题2 下列式子中哪些是不等式? (1)a+b=b+a (2)-3>-5 (3)x≠l (4)x十3>6 (5) 2m< n (6)2x-3 问题3 小组交流:说说生活中的不等关系. (培养学生主动参与、合作交流的意识,同时体会到在现实生活中,不等关系要比相等关系多得多.) 探究活动二 (二)不等式的解、不等式的解集 问题1 要使汽车在12:00以前驶过A地,你认为车速应该为多少呢? 问题2 车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢? 问题3 我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式 > 50的解? 问题4 数中哪些是不等式 > 50的解: 76,73,79,80,74. 9,75.1,90,60 你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律? 探究活动三 (三)不等式的解集的表示方法 例题:在数轴上表示下列不等式的解集 (1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1 分析:按画数轴,定界点,走方向的步骤答 解: 教师引导学生从以下方面分析: ①题目中有等量关系吗?如果没有等量关系,那是什么关系呢? ②从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。 ③从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。 这些是不等关系。 在学生独立思考、小组交流列式的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也是不等式。(板书) (口答)让学生在甄别不等式的过程中,加深对不等式意义的理解,教师引导总结一元一次不等式的概念. 上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.(板书) 学生分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.教师补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.(板书) 让学生小组内交流充分发表意见,并通过计算、动手验证、动脑思考,初步体会不等式解的意义以及不等式解与方程解的不同之处. 我们把它叫做不等式 > 50的解的集合,简称解集.这个解集还可以用数轴来表示(教师示范表示方法). 。 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式. 教师引导学生分析规范操作,并总结规律: 1.实心点表示包括这个点,空心点表示不包括这个点 2.大于向右走,小于向左走. 尝 试 应 用 1、 下列哪些是不等式x+3 > 6的解?哪些不是? -4,-2. 5,0,1,2.5,3,3.2,4.8,8,12 2、用不等式表示: (1)a是正数;(2)a是负数 (3)a与5的和小于7; (4)a与2的差大于-1; (5)a的4倍大于8; (6)a的一半小于3。 3、在数轴上表示下列不等式的解集: ① x < 2 ② x≥-3 4、不等式x < 5有多少个解?有多少个正整数解? 学生先独立完成,教师指4生到黑板上板书答案。 完成后师生共同纠错。 补 充 提 高 1、无论x为何值,下列不等式总成立的是( ) A. B. C. D. 2、已知是关于x的一元一次不等式,求关于y的方程的解. 3、小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他的钱超过280元才可以买,设个月后小刚的钱超过280元请你列出不等式,并找出满足此不等式的最小整数是几? 学生小组合作交流完成 教师巡视点拔 学生展示 师生总结规律 小 结 作 业 课堂小结: 通过本节课的学习,你学会了哪些知识?有哪些感悟?给同学、老师说一说? 作业: 1、必做题:教科书第128页习题9.1第1、2、3题。 学生小组内思考交流后,教师找两三名同学展示交流,强调总结: 1、不等式与一元一次不等式的概念; 2、不等式的解与不等式的解集; 3、不等式的解集在数轴上的表示. 达 标 测 评 一、 选择题 1.下列说法正确的是( ) A.x=1是不等式2x<1的解 B.x=3是是不等式-x<1的解集 C.x>-1是不等式-2x<1的解集 D.不等式-x<1的解集是x>-1 2.下列各式中一元一次不等式有( ) (1) (2) (3) (4) (5) A.1个 B.2个 C.3个 D.4个 二、 填空题 3.用不等式表示下列数量关系: ①a比1大 ;②x与一3的差是正数 ;③x的4倍与5的和是负数 。 三、 解答题 4、直接想出不等式的解集,并在数轴上表示出来: (1)x+3 > 6 (2)2x < 8 (3)x-2 ≥ 0 答案: 1、D;2、B; 3、①a>1; ②x-(-3)>0; ③4x+5<0. 4、(1)x>3;(2)x<4;(3)x≥2;图略。 板书设计 教 学 反 思 (总第三八课时)9.1.2 不等式的性质(1) 年级 七年级 课题 9.1.2 不等式的性质(1) 课型 新授 教 学 目 标 知识 技能 1、 理解掌握不等式的性质; 2、 会解决简单的一元一次不等式,并能在数轴上表示出解集。 过程 方法 经历通过类比、猜测、验证发现不等式性质的探索过程,初步体会不等式与等式的异同,初步掌握类比的思想方法。 情感 态度 通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性。 教学重点 理解并掌握不等式的性质及运用; 教学难点 不等式性质3的探索及正确运用不等式的性质; 课前指南 教学方法 启发、讨论、探究 教学手段 多媒体 教 学 过 程 设 计 问题与情境设计 师生活动设计 情 景 引 入 复习回顾: 等式有哪些性质? 导入新课: ①给不平衡的天平两边同时加入相同质量的砝码,天平会有什么变化? ②不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化? ③如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 学生回答等式的性质; 口头提出问题,在学生回答后演示验证。 自 主 探 究 自 主 探 究 自 主 探 究 探究活动一 (一)探究不等式的性质 问题1 用“>”或“<”填空. ①-1 < 3 -1+2 3+2, -1-3 3-3 ②5 >3 5+a 3+a ,5-a 3-a ③ 6 > 2 6×5 2×5 ,6×(-5) 2×(-5) ④-2 < 3 (-2)×6 3×6 (-2)×(-6) 3×(一6) ⑤-4 >-6 (-4)÷2 (-6)÷2 (-4)÷(-2) (-6)÷(-2) 问题2 从以上练习中,你发现了什么规律?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流. 问题3 你能用式子表示不等式的三条性质吗? 【板书如下: (1)若a >b,则a+c > b+c ,a-c >b-c; (2)若a >b,且c>0,则ac >bc ,a/c >b/c; (3)若a >b,且c<0,则ac<bc ,a/c<b/c。】 问题4 你能说出不等式性质与等式性质的相同之处与不同之处吗? 探究活动二 (二)不等式的性质的运用 问题1 利用不等式的性质填“>”, “<” : (1)若a>b,则2a 2b; (2)若-2y<10,则y -5; (3)a<b,c>0,则ac-1 bc-1; (4)a>b,c<0,则ac+1 bc+1。 问题2 利用不等式性质解下列不等式,并在数轴上表示解集: (1)x-7>26 (2)3x < 2x+1 (3)x ≤ 50 (4)-4x < 3 分析:解不等式最终要变成什么形式呢? 就是要使不等式逐步化为x>a或 x <a的形式。 解:(1) x-7>26 根据等式的性质1,得x-7+7>26+7 ∴x>33 33 O (2)3x < 2x+1 根据等式的性质1,得3x-2x < 2x+1-2x ∴x<1 1 O (3)2/3x ≥ 50 根据等式的性质2,得x ≥ 50×3/2 ∴x ≥7 5 O 75 (4)-4x≤3 根据等式的性质3,得 x≤-3/4。 O -3/4 学生计算并填空,在此基础上分组探索不等式的性质。教师深入小组参与活动,观察指导学生的探究方法,并倾听学生的讨论。 此次活动是本节课的核心活动,对学生有一定的难度,有些学生可能会直接把等式的两条性质加以修改,推广得到不等式的性质,而忽略了不等式的两边乘或除以同一个正数或同一个负数时的不同结论,此时教师应引导学生注意观察③④⑤题,并继续举几个例子让学生观察对比,体会不等式性质与等式性质的异同,用自己的语言描述发现的规律。 让学生充分发表“发现”,师生共同归纳得出: 不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变. 学生分组讨论,得出不等式性质的表示方法。 教师深入小组,帮助指导学生用字母表示不等式的性质,并注意对字母所表示的数的条件的说明。 教师引导学生用自己的语言描述不等式性质与等式性质的异同。 教师引导学生分析:不等式的两边发生了怎样的变化?填“>”或“<”的依据是什么?学生口答结果。 学生分组讨论下列不等式的解法,并注意寻找规律。 教师深入小组,给予适当的帮助和指导,并引导学生注意观察不等式的结构特点,总结规律,并统一规范写法。 此次活动中,教师应重点关注: (1)学生是否能抓住原不等式的结构特点,用不等式的性质解不等式; (2)对于不等式的解集,学生是否能准确地在数轴上进行表示; (3)学生对不等式性质3是否能正确应用; (4)学生在讨论的过程中是否敢于发表自己的想法,并说明想法的根据。 教师强调: (1)、运用不等式的性质1,实际上是解方程中的“移项”。 (2)、运用不等式的性质2、3,实际上是解方程中的“系数化为1”,解不等式时要注意未知数系数的正负,以决定是否以改变不等号的方向。 尝 试 应 用 1、设a < b,用“< ”或“ >”填空,并说明依据: (1)3a 3b ;依据 。 (2)a-8 b-8;依据 。 (3)-2a -2b ;依据 。 (4)2a-5 2b-5 ;依据 。 (5)-3.5a+1 -3.5b+1。依据 。 2、填空 (1)∵ 2a > 3a ∴ a是 数 (2)∵ ∴ a是 数 (3)∵ax < a且 x > 1 ∴ a是 数 3、解下列不等式,并在数轴上表示解集: (1)x+5>-1(2)4x < 3x-5 (3) (4)-8x < 10 学生先独立完成,1、2题口答。 教师指定4生到黑板上板书3题答案。 完成后师生共同纠错。 补 充 提 高 1、根据下列已知条件,说出a与b的不等关系,并说明是根据不等式哪一条性质。 (1)a-3 > b-3 (2) (3)-4a > -4b 2、用不等式表示下列语句并写出解集: (1)x与3和不小于6; (2)y的4倍小于或等于-2。 (3)x的3倍大于或等于1; (4)y与1的差不大于0 3、关于x的不等式2x+a0的负整数解是-2,-1,求a的取值范围. 学生小组合作交流完成 教师巡视点拔 学生展示 师生总结规律 小 结 作 业 课堂小结: 通过本节课的学习,你学会了哪些知识?有哪些感悟?给同学、老师说一说? 作业: 1、必做题:教科书第128页习题9.1第4、5、6题。 2、选做题:《全效学习》对应练习。 在学生自己总结的基础上,教师应强调两点: 1、等式性质与不等式性质的不同之处; 2、在运用“不等式性质3"时应注意的问题. 板书设计 教 学 反 思 (总第三九课时)9.1.2 不等式的性质(2) 年级 七年级 课题 9.1.2 不等式的性质(2) 课型 新授 教 学 目 标 知识 技能 1、 使学生熟练掌握不等式性质,灵活利用不等式性质解不等式; 2、 初步认识一元一次不等式的应用价值; 过程 方法 学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力; 情感 态度 在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯. 教学重点 不等式的性质和解法; 教学难点 不等式的性质和解法; 课前指南 教学方法 启发、讨论、探究 教学手段 多媒体 教 学 过 程 设 计 问题与情境设计 师生活动设计 情 景 引 入 复习回顾: 1、不等式的三条基本性质是什么? 2、用“<”、 “ >” 或“=”填空: (1)若a >b, 则a+c b+c ,a-c b-c; (2)若a >b,且c>0, 则ac bc ,a/c b/c; (3)若a >b,且c<0, 则ac bc ,a/c b/c。 学生抢答不等式的三条基本性质; 教师将2题板书在黑板上,学生上黑板填空,或指定二生到黑板默写。 自 主 探 究 自 主 探 究 探究活动一 (一)运用不等式性质解不等式 问题1 解下列不等式,并在数轴上表示解集: (1)x-5>-2 (2)- (3) 8x-2 < 7x+3 问题2 解下列不等式,并在数轴上表示解集: (1) 7-3x≤10 (2)2x-3 < 3x+1 探究活动二 (二)不等式的简单应用 问题1 某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备继续向它注水.用V(单位: cm3)表示新注入水的体积,写出V的取值范围。 解:依题意,得 V+3×5×3≤3×5×10 ∴V≤105。 不是,因为新注入水的体积不能是负数,所以V≥0。 ∴ 0≤V≤105 在数轴上表示为: O 105 问题2 三角形任意两边之差与第三边有着怎样的大小关系? a b c 解:设 a、b、c为任意一个三角形的三条边的长,则 a+b>c, b+c>a, c+a>b. 移项,得 a>c-b, b>a-c, c>b-a. 三角形中任意两边之差小于第三边。 学生独立完成,巩固单独运用不等式的一条基本性质求解的不等式的解法,并探究问题2作准备。 教师指定三名同学到黑板上板演,并巡视学生的解题情况。 完成后师生纠错。 学生小组合作探究问题2,教师巡视指导,小组指派二生到黑板上板书展示成果。 完成后教师引导学生比较问题1与问题2的区别,并总结解题规律。 学生独立思考,然后小组讨论。 1、教师引导学生分析:新注入水的体积应满足什么条件? 首先,注入水的体积的非负的;其次,注入的水(V)加原来的水不能超过容器的容积。 故知基于这两点,我们有V≥0和V+5×3×3≤5×3×10. 详细解答可得:0≤V≤105。 学生书写解答过程,师生规范完善。 2、教师引导学生分析: 教师:我们知道,三角形的两边之和与第三边有什么关系? 学生:三角形两边之和大于第三边。 教师:我们如果设三角形三边长分别为a,b,c,那么如何表示前面的结果? 学生:a+b>c,b+c>a,c+a>b. 教师:我们现在要求的问题是三角形两边的差与第三边的关系,如何由上面的式子变化得到呢? 学生:利用不等式的性质1。 在师生分析的过程中教师在黑板上写出解答过程,式子的变化方式由学生口答。 师生总结:三角形中任意两边之差小于第三边。 尝 试 应 用 1、解下列不等式,并在数轴上表示解集: (1)3-5x ≥ 4-6x (2)-300x<1500 (3)2-2x<6 (4)5x+54<x-1 2.当x 时,2-3x为非正数. 3、已知一个等腰三角形的底边长5,腰长为x,则x的取值范围是 . 学生先独立完成,1、2题口答。 教师指定学生到黑板上板书; 完成后师生共同纠错。 补 充 提 高 1.解下列不等式,并把它们的解集在数轴上表示出来。 (1)(1-x)<2(x+9); (2) . 2.已知关于的方程的解是非正数,求的取值范围。 3.一个长方形的周长为60㎝,长不小于宽,那么它的长的取值范围是什么? 4、思考题:已知关于x的不等式(1-a)x>2的两边同时除以(1-a)得到,试化简 学生小组合作交流完成 教师巡视点拔 学生展示 师生总结 小 结 作 业 课堂小结: 围绕以下几个问题: 1、这节课的主要内容是什么? 2、通过学习,我取得了哪些收获? 3、还有哪些问题需要注意? 让学生自己归纳,教师仅做必要的补充和点拨. 作业: 1、必做题:教科书第129页习题9.1第10、11、12、13题。 2、选做题:《全效学习》对应练习。 让学生自己归纳,教师仅做必要的补充和点拨. 板书设计 教 学 反 思 (总第四十课时)9.2一元一次不等式(1) 年级 七年级 课题 9.2一元一次不等式(1) 课型 新授 教 学 目 标 知识 技能 1.了解一元一次不等式的概念; 2.掌握一元一次不等式的解法; 3.会在数轴上表示不等式的解集,会求不等式的整数解。 过程 方法 类比解一元一次方程的过程探究一元一次不等式的解法,领会化归思想。 情感 态度 激发学生学习兴趣,让学生体验探究的快乐。 教学重点 一元一次不等式的解法. 教学难点 领会化归思想,克服解不等式中易犯错误。. 课前指南 教学方法 类比、探究、讨论 教学手段 多媒体 教 学 过 程 设 计 问题与情境 师生活动 复 习 引 入 1.复习一元一次方程的定义 : 只含有一个未知数,并且未知数的次数是1的方程。 2. 解方程:(写出详细解题过程) 3.回忆不等式的基本性质。 复习一元一次方程的定义和解法,为学生类比探究一元一次不等式的定义、解法奠定基础。 不等式性质是解不等式的依据。 类 比 探 究 1. 归纳一元一次不等式的定义: 2. 利用不等式性质求出下列不等式的解集: 3. 类比解方程的过程求不等式的解集。 4,例题:解不等式 5.归纳解一元一次不等式的解法思想和一般步聚: (1)解一元一次不等式,要根据不等式的性质,将不等式逐步化为x>a或x<a的形式. (2)去分母—去括号—移项—合并同类项—系数化为1. 6.结合例题解题过程思考每一步变形的依据。 7.思考解一元一次不等式与解一元一次方程的异同。 学生类比归纳一元一次不等式的定义。 利用不等式性质直接求出解集,初步感受解不等式的目标是将不等式化为 类比一元一次方程的解法学生独立探究一元一次不等式的解法。 引导学生归纳一元一次不等式的解法步骤,对比一元一次不等式与一元一次方程的解法,培养归纳能力,体会化归思想和类比思想。 巩 固 应 用 1.解下列不等式,并将解集在数轴上表示出来: (1) (2) 2.不等式的非负整数解是 。 3.关于x的方程的解是负数,则m的取值范围是 。 4. 已知关于x,y的方程组的解满足,试求 a的取值范围。 熟练解一元一次不等式组,注意系数化1时,不等式两边同除以(乘以)负数时,不等号的方向是否改变了。 会求不等式的整数解 综合运用方程、方程组、不等式解题,提高综合运用知识能力。 小 结 1.解一元一次不等式的步骤。 2.类比和化归思想。 对比一元一次不等式与一元一次方程的定义和解法。 作 业 课本第126页1、2、3。 板 书 设 计 教 学 反 思 (总第四一课时)9.2一元一次不等式(2) 年级 七年级 课题 9.2一元一次不等式(2) 课型 新授 教 学 目 标 知识 技能 1.巩固一元一次不等式的解法; 2.能利用一元一次不等式解决实际问题。 过程 方法 经历从实际问题中抽象出数学问题,根据数量关系建立一元一次不等式进行求解,体会数学建模的思想、分类讨论的思想. 情感 态度 培养合作交流能力,感受数学的应用价值。 教学重点 分析实际问题中的不等关系列出一元一次不等式. 教学难点 如何从实际问题抽象出不等关系,建立不等式模型进行求解. 课前指南 教学方法 探究、讨论 教学手段 多媒体 教 学 过 程 设 计 问题与情境 师生活动 复 习 引 入 1.列一元一次方程解应用题的步骤: (1) 审:审题,弄清已知和未知,分析题目中的数量关系; (2)找:找出题目中的相等关系; (3) 设:设适当的未知数,并表示未知量; (4)列:根据相等关系列方程; (5) 解:解这个方程; (6) 验:检验方程的解是否符合题意. (7)答:写出答案. 2.实际问题 数学问题(一元一次方程) 3.如何利用一元一次不等式解决实际问题呢? 回忆列方程解应用题的步骤 回忆数学建模的思想 类比猜想列一元一次不等式解决实际问题的一般方法 合 作 探 究 合 作 探 究 合 作 探 究 【探究一】: 某次知识竞赛共有20道题.每道题答对加10分,答错或不答均扣5分:小明要想得分超过90分,他至少要答对多少道题? 1.这道题目中含有一个什么样的不等关系?请把它找出来 2.要想表示小明得分,设哪一个量为未知数比较好? 3.如何用未知数表示出小明的得分? 10x-5(20-x) 4.根据不等关系列出不等式。 5.请写出完整的解答过程: 解:设小明至少要答对X道题.则他答错或不答的题数为20-X根据小明的得分大于90分得: 10X-5(20-X) >90 去括号,得:10X-100+5X>90 移项,合并,得:15X>190 系数化1,得:X>12 在本题中X应是__整___数而且不能超过20 所以小明至少答对12道题 【探究二】:去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少? 1. 此实际问题中的不等关系是什么? 2.设x表示明年增加的空气质量良好 的天数,则明年空气质量是良好的天数是 多少? 3.你能列出不等式并解出来吗? 4.你能给出一个合理化的答案吗? 【探究三】:甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购买100元后,超出100元的部分按90%收费;在乙商场累计购买超过50元后,超过50元的部分按95%收费.顾客到哪家商场购物花费少? 1.你是如何理解题意的呢?与同学交流! 2.如果购物款为x元,你能分别表示出在两家商场花费的钱数吗? 3.你能清楚直观地表示上述问题吗?请列表说明。 4.(1)如果累计购物不超过50元,则在两家商场购物花费有区别吗?; ((2)如果累计购物超过50元但不超过100元,则在那家商场购物花费小?为什么? (3)如果累计购物超过100元,又如何确定在哪家商场购物花费小呢? 分三种情况进行讨论 ①什么情况下,到甲商场购物花费少? ②什么情况下,到乙商场购物花费少? ③什么情况下,两商场花费一样? 归纳: 类比列一元一次方程解应用题探究解法 师生共同归纳得出,运用一元一次不等式解应用题时的一般步骤: 审,找,设,列,解,验,答, 比较与列方程解应用题的异同 学生读题,理解题意,特别是题中的两个百分数的含义 引导学生找出不等关系 让学生明白实际问题的答案要取整数解 先独立思考,理解题意,弄明白两商场的优惠方案,再组内交流, 列表表示有关数量,进行对比 针对购物款的不同范围进行比较讨论 引导学生进行两级分类,当累计购物超过100元时,学生讨论发现有三种情况,引导学生把问题化归为方程和不等式解决。 师生共同规范解答过程 画出列一元一次不等式解决实际问题的框图,领会数学建模思想 巩 固 应 用 某单位计划“五一”黄金周期间组织10~25名员工到某地旅游,甲、乙两家旅行社的服务质量相同,且报价都是每人50元,经过协商,家旅行社表示可给予每位旅客六五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余旅客按七折优惠,该单位选择那一家旅行社支付的旅游费用较少/ 学生独立思考,类比探究三完成,把实际问题转化为数学问题(一元一次方程或一元一次不等式)解决。 小 结 1.列一元一次不等式解决实际问题的步骤。 2.数学建模的思想,分类讨论的思想。 从知识、方法和思想上进行反思 作 业 课本第126页5、6、8、9。 板 书 设 计 教 学 反 思 (总第四二课时)《不等式与不等式组复习》 年级 七年级 课题 第九章 不等式与不等式组复习 课型 复习 教 学 目 标 知识 技能 1. 会运用不等式的基本性质解一元一次不等式(组); 2. 会借助数轴确定不等式(组)的解集; 3. 会根据题中的不等关系建立不等式(组),解决实际应用问题。 过程 方法 1. 学会分析现实问题的不等关系,提炼有关不等式(组)来解决问题; 2. 允许学生暴露在解不等式时易犯或常犯的错误,以便有针对性地解决问题。 情感 态度 1.本单元主要让学生领会数形结合的解题思想。 2.提高运用不等式有关知识解决实际问题的能力。 教学重点 构建不等式的知识体系,解决有关问题 教学难点 灵活运用所学知识分析解决现实生活的实际问题. 课前指南 教学方法 类比、探究、讨论 教学手段 多媒体 教 学 过 程 设 计 问题与情境 师生活动 知 识 梳 理 1.不等式的性质有哪些? 2.一元一次不等式的概念及解法是什么? 3.一元一次不等式组的概念及解法是什么? 4.举例说明数轴在解不等式(组)中的作用. 5.用一元一次不等式解决实际问题的步骤是什么? 解不等式(组) 设未知数 列不等式(组) 实际问题 (包含不等关系) 数学问题 (一元一次不等式或一元一次不等式组) 数学问题的解(不等式(组)的解 实际问题的解答 检验 回顾本章重要概念以及解法 回顾本章的知识网络图。 让每个学生画图。教师在总结时要条理,准确,全面。 知 识 体 系 让学生通过知识的系统化,条理化,进一步建构数学体系. 典 型 例 题 例1 如果,那么下列不等式中不成立的是( ) (A) (B) (C) (D) 例2 解下列不等式(组),并把它们的解集在数轴上表示出来。 (1) (2) (3) (4) 例3 小明上午8时20分出发去郊游.10时20分时,小亮乘车出发.已知小明每小时走4 km,那么小亮要在11时前追上小明,速度至少应是多少? 分析: 这是一个追赶问题,从路程下手找不等关系.小明出发时,小亮行了10:20-8:20=2小时.小明要在11点前追上小华 小亮行了2+小时,而小明行了小时. 解:设小明的速度至少要每小时行x千米. 答:小亮的速度至少为16千米/时. 分析:运用不等式的性质 答案:(B) 独立完成,请四位学生在黑板上板演 答案: (1) (2) (3)无解 (4) 综 合 应 用 1、 已知不等式组的解集为x>2,则a的取值范围是 2、 x取哪些整数值时,代数式与的差大于6且小于8? 3、(1)有3个正整数解,那么m的取值范围是? (2)有3个正整数解,那么m的取值范围是? (3)有3个正整数解,那么m的取值范围是? (4)有3个正整数解,那么m的取值范围是? 4、某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5 件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题: (1)用含x的代数式表示m. (2)求出该次活动中获赠顾客人数及所准备的礼品数. 有7人获礼品赠送,共有礼品43件 小 结 学完本章,你肯定有很多收获,在小组里和你的同学说说,让大家分享你的成功. 以上题目及知识点你是否顺利完成,本章所涉及的数学方法你是否掌握,回顾一下,自我进行完善. 教师组织大家在小组进行交流,找2—3名同学展示回顾反思. 教师和全体同学完善补充 作 业 教科书 复习题9 第3、4、8题 板 书 设 计 教 学 反 思 21- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式与不等式组 第九 不等式 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文