平面直角坐标系优秀教案.doc
《平面直角坐标系优秀教案.doc》由会员分享,可在线阅读,更多相关《平面直角坐标系优秀教案.doc(8页珍藏版)》请在咨信网上搜索。
第六章 平面直角坐标坐标系 一、双基回顾 1、点的坐标:过平面内任意一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的坐标a、b分别叫做点P的 ,有序数对(a,b)叫做P点的 。 注意:平面上的点与有序实数对(坐标)一一对应。 〔1〕已知点P的坐标是(-2,3),则点P到x轴的距离是 ,到y轴的距离是 . 2、象限 第二象限 ( -,+ ) 第一象限 ( +,+ ) 第二象限 ( -,- ) 第二象限 ( +,- ) 〔2〕如果点M到y轴的距离是4,到x轴的距离是3,则M的坐标为 . 3、坐标轴上点的特征:x轴上点的坐标的特点是 ,y轴上点的坐标的特点是 ,原点的坐标是 . 〔3〕如果点A(m,n)的坐标满足mn=0,则点A在( ) A. 原点上 B. x轴上 C. y轴上 D. 坐标轴上 4、建立直角坐标糸 〔4〕如图所示,若在象棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点 . 二、例题导引 例1 如果点M(a+b,ab)在第二象限,那么点N(a,b)在第________象限;若a=0,则M点在 . 例2已知长方形ABCD中,AB=5,BC=3,并且AB∥x轴,若点A的坐标为(-2,4),求点C的坐标. 例题3.已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),求四边形ABCD的面积。 夯实基础 1、在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示_______________。 2、课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( ) A、(5,4) B、(4,5) C、(3,4) D、(4,3) 3、点A(3,-5)在第_____象限,到x轴的距离为______,到y轴的距离为_______。 4、在平面直角坐标系中,点(-1,m2 +1)一定在( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 5、点P(m+3, m+1)在坐标系的x轴上,则点P的坐标为( ) A.(0,-2) B.( 2,0) C.( 4,0) D.(0,-4) 6、已知点A(-1,b+2)在坐标轴上,则b =________. 7.、图中标明了李明同学家附近的一些地方;(1)根据图中所建立的平面直角坐标系,写出学校,邮局的坐标;(2)某星期日早晨,李明同学从家里出发,沿着(-2, -1)、(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方;(3)连接他在(2)中经过的地点,你能得到什么图形? 能力提高 8、坐标平面内的点M(a,b)在第三象限,那么点N(b,-a)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 9、点K在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 。 10、已知线段 MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为 . 11、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为( ) A.(2,2) B.(3,2) C.(3,3) D.(2,3) 12、已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为( ) A.4 B.6 C.8 D.3 用坐标表示地理位置 小敏家:出校门向南走100米,再向东走300米,最后向南走75米. 学校 (150,200) 小刚家 O 我们知道,在平面内建立直角坐标系后,平面内的点都可以用坐标来表示,为此,要确定区域内一些地点的位置,就要建立直角坐标系。 思考:以什么位置为原点?如何确定x轴、y轴?选取怎样的比例尺? 下图是小红所在学校的平面示意图,请你指出学校各地点的位置。 学校门 办公楼 · · 操场 宿舍 实验楼 · · 教学楼 · · · 食堂 . 二、图形的平移与图形上点的变化规律 首先我们研究点的平移规律。 如图,〔投影1〕(1)将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,点A的坐标发生了什么变化?把点A向上平移4个单位长度呢? 将点A向右平移5个单位长度,横坐标增加了5个单位长度,纵坐标不变;将点A向上平移4个单位长度,纵坐标增加了4个单位长度,横坐标不变. (2)把点A向左或向下平移4个单位长度,点A的坐标发生了什么变化? 将点A向左平移4个单位长度,横坐标减少了4个单位长度,纵坐标不变;将点A向下平移4个单位长度,纵坐标减少了4个单位长度,横坐标不变. 从点A的平移变化中,你知道在什么情况下,坐标不变吗?在什么情况下,坐标增加或减少吗? 将点向左右平移纵坐标不变,向上下平移横坐标不变;将点向右或向上平移几个单位长度,横坐标或纵坐标就增加几个单位长度;向左或向下平移几个单位长度,横坐标或纵坐标就减少几个单位长度。 简单地表示为〔投影2〕 点(x,y) 点(x+a,y) 向右平移a个单位长度 点(x,y) 点(x-a,y) 向左平移a个单位长度 点(x,y) 点(x,y+b) 向上平移a个单位长度 点(x,y) 点(x,y-b ) 向下平移a个单位长度 再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化? 三、图形上点的变化与图形平移的规律 对一个图形进行平移,就是对这个图形上所有点的平移,因而这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移. 〔投影3〕例 如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2). (1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系? (2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系? 解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到. 思考:〔投影4〕 (1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形。 (2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形。 归纳上面的作图与分析,你能得到什么结论? 在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,得到的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,得到的新图形就是把原图形向上(或下)平移a个单位长度。 简单地表示为〔投影5〕 点(x+a,y) 图形向右平移a个单位长度 点(x-a,y) 图形向左平移a个单位长度 点(x,y+b) 图形向上平移a个单位长度度 点(x,y-b ) 图形向下平移a个单位长度 例题导引 例1 如图,这是某市部分地区的简图,请你用坐标表示各地的位置。 例2 如图,(1)描 出A(– 3,– 2)、B(2,– 2)、C(– 2,1)、D(3,1)四个点,线段AB、CD有什么关系? (2)顺次连接A、B、C、D四点组成的图形是什么图形? (3)这个图形的面积是多少? 例3 如图,△ABC中任意一点P(x,y)经平移后对应点为(x+3,y+2),画出它作同样平移后的△A′B′C′ ,并写出A′、B′、C′的坐标. 夯实基础 1、点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是 〔 〕 A.(4,2) B.(-2,-4) C.(-4,-2) D.(2,4) 2、将某图形的纵坐标都减去2,横坐标不变,则该图形〔 〕 A.向右平移2个单位 B.向左平移2 个单位 C.向上平移2 个单位 D.向下平移2 个单位 3、与图1中的三角形相比,图2中的三角形发生的变化是( ) A.向左平移3个单位长度 B.向左平移1个单位长度 C.向上平移3个单位长度 D.向下平移1个单位长度 3题 5题 4、一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________。 5、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成 。 6、已知点A(2,-3),线段AB与坐标轴没有交点,则点B的坐标可能是 〔 〕 A.(-1,-2) B.( 3,-2) C.(1,2) D.(-2,3) 7、线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为〔 〕 A.(2,9) B.(5,3) C.(1,2) D.(– 9,– 4) 8、已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________________. 能力提高 9、如图,红色图形可以由蓝色图形经过怎样的平移得到?对应点的坐标有什么变化? 10、如图,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0+3),将三角形ABC作同样的平移得到三角形A1B1C1,求A1,B1,C1的坐标。(图见课本55面7题) 11、如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标。(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标. 12、如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5)。(1)求三角形ABC的面积;(2)如果将三角形ABC向上平移1个单位长度,得三角形A1B1C1,再向右平移2个单位长度,得到三角形A2B2C2。试求出A2、B2、C2的坐标;(3)三角形A2B2C2与三角形ABC的大小、形状有什么关系。 A CA XA Y BA 13、如图,三角形PQR是三角形ABC经过某种变换后得到的图形,分别写出点A与点P,点B与点 Q,点C与点R的坐标,并观察它们之间的关系。如果三角形ABC中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么? 8 / 8- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 直角 坐标系 优秀 教案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文