数选修课标解读.doc
《数选修课标解读.doc》由会员分享,可在线阅读,更多相关《数选修课标解读.doc(24页珍藏版)》请在咨信网上搜索。
1、数学选修22课标解读2.2推理与证明1.知识内容的整体定位“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理与演绎推理。合情推理是根据已有的事实和正确的结论(包括定义、公理、定理)、试验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳、类比是合情推理常用的思维方法。在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新的结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理
2、和演绎推理之间联系紧密、相辅相成。证明包括逻辑证明和试验、实践证明,数学结论的正确性必须通过逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学过知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。为了更好地理解整体定位,需要明确以下几个方面的问题:(1)归纳推理归纳推理是针对一类事物而言的,如图(1)所示:A和B具有的共同的特性是否可以推广到整个S?这就是
3、一个从局部到整体的过程。例如,1)在统计学中,由一部分数据的特征数,推测出总体数据的特征数。2)解线性方程组时,由二元线性方程组的解法,推广到多元线性方程组的解法。3)平面向量推广到空间向量再推广到向量空间。(2)类比推理类比推理是针对的两类事物,如图(2)所示,在A和B两类事物中,A类中有性质成立,类中也有性质成立,A类中还有性质成立,那么B类中是否也有性质成立呢?通过两类事物的类比可以对事物的性质有更深刻的理解,并且可以帮助进行逻辑推理。例如,1)平面几何与球面几何的类比。2)指数函数与对数函数的类比。3)等式与不等式的类比。4)有理数与无理数的类比。5)数的运算与符号的运算的类比。6)平
4、面上直角三角形三边的关系与直三棱锥三个平面的关系的类比。SABqpq?pAB(图1) (图2)标准要求学生“能通过观察、实验、归纳、类比等获得数学猜想,并经进一步寻求证据、给出证明或举出反例”。也就是要求学生在获得数学结论时要经历合情推理到演绎推理的过程。合情推理的实质是“发现猜想证明”,因而关注合情推理能力的培养实际上就是希望教师能够重视数学知识的产生和发展过程,发展学生的探究和创新精神。(3)对于“合情推理”和“演绎推理”,要通过具体的实例理解合情推理和演绎推理,不追求对概念的抽象表述。模块中设置的证明问题应选材于学生已学过的数学实例和生活中实例,了解和情推理的含义体会演绎推理的重要性,掌
5、握演绎推理的基本方法,并能运用它们进行一些简单的推理,因此,应结合教材提供的具体实例组织教学,补充的实例也应该以“已经学过的数学实例和生活中的实例”为准,对证明的问题的难度也要加以控制。(4)结合已经学过的数学实例,让学生了解直接证明和间接证明的思考过程、特点。已知条件新的结论与要证明的结论是否吻合?结束综合有关的公理、定理和已经得到的结论是否直接证明综合法直接证明分析法要证明的结论论论得到使上面结果成立的充分条件新结果在已知条件下新结果是否成立?结束结合有关的公理、定理和已经得到的结论是否用新结果替代要证明的结果要证明的结论否定要证明的结论把“否定要证明的结论”作为条件件得出新的结论结合相关
6、的公理、定理或已得到的结论是否与已知条件或公理、定理矛盾结束是否间接证明反证法直接证明数学归纳法:判断即(或是成立的假设命题成立其中,(或)证明也成立命题对所有的都成立结合有关的公理、定理或已经得到的结论标准对“了解和情推理的含义,能利用归纳和类比等进行简单的推理;了解直接证明的两种基本方法和间接证明的一种方法”的要求是阶段性要求,“体会并认识合情推理在数学发现中的作用,感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯”的要求是终结性要求。2.课程标准的要求(1)合情推理与演绎推理 结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体
7、会并认识合情推理在数学发现中的作用。 结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。 通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。 结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。(3)数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。(4)数学文化 通过对实例的介绍(如欧几里得几何原本、马克思资本论、杰弗逊独立宣言、牛顿三定律),体
8、会公理化思想。 介绍计算机在自动推理领域和数学证明中的作用。3.课程标准要求的具体化和深广度分析(1)如何认识“了解合情推理的含义”对合情推理的含义的认识是指通过具体实例的推理过程的分析、体会、概括出合情推理的描述性定义和常用的归纳和类比的思维方法。例如,歌德巴赫把在数学研究中观察到的式子在形式上改写成:,发现了规律:偶数=奇质数+奇质数,于是他产生了一个想法:10,20,30,都是偶数,那么其他的偶数是否也有类似的规律呢?他进行了特例的验证,概括出特例的规律特征,提出了猜想:任何一个不小于6的偶数都等于两个奇质数之和。这个猜想的提出过程就是运用了经历由部分到整体、由个别到一般的归纳推理过程。
9、又如:在研究球体时,类比圆,发现球存在一些与圆类似的特征(如都具有完美的对称性,都是到定点的距离为定长的点集),因此,我们推测对于圆的特征,球也可能具有。如圆有切线推测球有切面等等。这种推理过程是由两类对象具有的类似特征,由其中一类对象具有的某些已知特征推测另一类对象也具有这些特征,是由特殊到特殊的类比推理过程。(2)如何认识“能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用”的含义“能利用归纳和类比等进行简单的推理”是指:对给定的具体问题,能够通过计算、分析、比较、概括、推广、归纳、观察、推测、类比等手段或方法完成简单的推理。例如:已知数列的第1项,且,试归纳出数列的通
10、项公式。可以根据已知的递推公式,算出数列的前几项,观察数列的前几项和序号的关系,找出规律和共同特点,归纳出数列的通项公式。“体会并认识合情推理在数学发现中的作用”的含义是指体会并认识合情推理具有猜测和发现新结论,探索和提供解决问题的思路和方法的作用;例如欧拉公式的发现就是在探求凸多面体的面、顶点、棱之间的数量关系时,运用合情推理发现的。(3)如何认识“体会演绎推理的重要性”的含义演绎推理是由一般到特殊的推理,“三段论”是演绎推理的一般模式。在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。能够运用演绎推理的“三段论”的思维模式证明数学问题,获得数学结论。例如:证明函数在上是增函数。
11、大前提是增函数的定义,小前提是,满足增函数的定义,于是根据演绎推理的“三段论”,得在上是增函数。(5)如何认识“了解合情推理和演绎推理之间的联系和差异”的含义归纳与类比是常用的合情推理。从推理形式上看,归纳是由部分到整体、由个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理。从推理所得结论看,合情推理的结论只是猜测,未必可靠,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确。合情推理与演绎推理都是认识世界的过程中需要的重要的思维方式,两者紧密联系、相辅相成。(6)如何认识“了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法
12、的思考过程、特点”的含义“了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点”是指通过实例,对已学过的数学知识的证明方法的思考过程与特点进行分析与概括,即:综合法是“顺推法或由因导果法”,分析法是“逆推法或执果索因法”。(7)如何认识“了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点”的含义“了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点”是指要明白反证法的适用情形和使用的逻辑规则,特别是明确应用逆向思维,推出与已知条件或假设或定义、公理、事实等矛盾是反证法的思考过程的特点。(8)如何认识“了解数学归纳法的原理,能用数学归纳法证明一些简单的
13、数学命题”的含义“了解数学归纳法的原理”的含义是指了解数学归纳法的适用范围,明确数学归纳法的两个步骤(“归纳奠基”和“归纳递推”)的作用和数学归纳法证明时,只有把两个步骤的结论结合起来,才能判断对所有自然数都成立,两个步骤是缺一不可的。“能用数学归纳法证明一些简单的数学命题”的含义是指正确使用数学归纳法证明数学命题,特别是在第二步证明时,必须使用假设推出结论。(9)如何认识“体会公理化思想”的含义“体会公理化思想”的含义是指通过介绍实例(如欧几里得几何原本、马克思资本论、杰弗逊独立宣言、牛顿三定律),使学生了解数学知识的产生和发展过程,体会公理化思想的发展及对科学发现、社会进步的作用,进而发展
14、学生的探究和创新精神。4.教学要求(1)恰当创设情境,促进学生的自主探索合情推理并非盲目地、漫无边际地胡乱猜想,它是以数学中某些已知事实为基础,通过选择恰当的复习结构材料创设情境,引导学生观察。体现知识的发生、发展过程,促进学生自主探索。并尽量将学生所熟悉的知识,通过归纳、类比的思想,逐步推广到未知的知识领域。在中学数学的教学实践中,通过恰当创设情境,引导学生观察;精心设计实验,激发学生思维;仔细设计问题,激发学生猜想;利用类比探讨,加深知识理解;利用数学归纳,巩固特殊到一般思维;利用演绎证明,揭露蕴涵性质等渐进地培养学生的数学思维意识和合情推理能力。例 类比平面内直角三角形的勾股定理,试给出
15、空间中四面体性质的猜想。PEFDABC考虑到直角三角形的两条边互相垂直,所以我们选取有三个面两两垂直地四面体,作为直角三角形的类比对象。让学生分析比较:四面体两边交成1个直角3个面在一个顶点处构成3个直二面角直角边面,和的面积和斜边面的面积推测出结论:再用综合法证明。体现出由推理到证明探究的完整过程。(2)教学中要让学生感受探究的过程通过观察问题和从问题发现到对问题解决的整个思维过程,让学生真实地感受到数学的创造过程与任何其他学科的创造过程是一样的,它同样需要经历观察、试验、归纳结论,最后再加以严格证明的一个完整的归纳推理的思维过程。例如:关于凸多面体的“欧拉公式”的探究思路。(3)重视数学文
16、化,让学生感受演绎推理,初步体会公理化思想方法中学数学教材基本上是以演绎推理作为主要的推理模式,运用最普遍是“三段论”式的结构,它由两个前提(分别称为大前提、小前提)和一个结论构成。大前提是具有一般性的原理,如已知的公理、定理、定义、性质等;小前提是包含在大前提所指事物的特殊事物,如命题中给出的已知条件;结论是根据两个前提推出的判断。其模式为:大前提:M是P小前提:S是M结 论:S是P尽可能地选取原始概念和一组不加证明的原始命题(公理、公设),以此为出发点,应用演绎推理,推出尽可能多的结论的方法,称为公理化方法。5.重、难点分析推理与证明贯穿高中数学的整个体系,它的系统学习是新课标教材的一个亮
17、点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领作用。合情推理具有猜测和发现新结论、探索和提供解决问题的思路和方法的作用;演绎推理则具有证明结论,整理和构建知识体系的作用,是公理化体系中的基本推理方法。两者紧密联系、相辅相成,它们的学习有利于培养学生的逻辑思维能力和创新思维能力,形成和发展理性思维,使学生体会并认识合情推理在教学发现中的作用,体会证明的功能和特点及在数学和生活中的作用,养成言之有理、论之有据的习惯。因此准确把握概念,理解和情推理、演绎推理的联系与区别,理解直接证明与间接证明的方法和步骤是重点。如何通过对命题进行观察、比较、分析、类比、归纳,运用适当的方法对命题给予证
18、明是难点。导数及其应用这部分内容分别在选修系列11和选修系列22中学习。其中,对导数概念的认识、导数在研究函数性质中的应用,以及生活中的优化问题举例等内容的学习和教学要求是一样的。稍有区别的是在选修系列22中,增加了定积分与微积分基本定理的内容;此外,对运算的要求略有提高。微积分的内容在我国的中学教材中几进几出,分析其原因,除了高考的影响外,主要是定位不当。主要问题大致有:作为大学微积分内容的一种缩编,简单下放;先讲极限概念,把导数作为一种特殊的极限来讲,于是,形式化的极限概念就成了学生学习的障碍,严重影响了对导数思想和本质的认识和理解;无论是导数概念,还是导数的应用,更多是作为一种规则来教、
19、来学,影响了对导数思想和本质的认识和理解。这样造成的结果是:因为存在着夹生饭现象,大学不欢迎;中学感受不到学导数的好处,反而加重了学生的负担,因此也不欢迎。以下就标准对这部分内容的教育价值、定位、处理上的变化和变化的缘由作进一步的诠释。一、教育价值1.促进学生全面认识数学价值微积分是全面认识数学价值的一个较好的载体。随着科技的进步和社会发展,无论是中学毕业后直接步入社会还是继续进入高一级学校学习,都应对微积分的基本思想有所了解。尤其是变化率的概念,在现代社会中随处可见(如运动速度、绿地面积增长率、工厂“三废”的排污率、人口的增长率、汽油的使用率等等),“导数及其应用”的学习可以帮助学生认识变化
20、率,认识平均变化率与瞬时变化率的区别与联系,并对在实践中如何运用它处理优化问题有所了解。此外,通过“导数及其应用”的学习(包括阅读材料、实习作业等多种方式),还可体会人类文明与科技、社会发展对微积分创立的促进作用,以及微积分的创立在人类文化发展中的意义和价值。总之,“导数及其应用”的学习将促进学生全面认识数学的价值,包括应用价值、科学价值、文化价值。2.使学生对变量数学的思想和方法有新的感受如果说,“数”是用来描述静态事物的,函数是对运动变化的动态事物的描述,体现变量数学在研究客观世界中的重要作用,那么,可以说,导数就是对事物变化快慢的一种描述,并由此可进一步处理和解决极大极小、最大最小等实际
21、问题,是研究客观事物变化率和优化问题的有力工具。通过学习导数,可以从中体验研究和处理不同对象所用的不同函数概念和相关理论,以及变量数学的力量。3.发展高中学生的思维能力极限是一种重要的数学思想之一,也是人们认识世界的一种重要的思维模式,它和我们以前的思维模式有很大的不同。导数就是一种特殊的极限,在现实生活中,它有着非常广泛的应用。在高中阶段,应通过大量的实例,让学生理解从平均变化率到瞬时变化率,从有限到无限的思想,认识和理解这种特殊的极限,通过它了解这种认识世界的思维模式,提高中学生的思维能力。4.为学生进一步学习微积分打下基础在微积分的学习中,将会遇到各种不同形式的极限,如数列的极限、函数的
22、极限,而连续、导数、高阶导数、定积分、线积分、面积分等概念根本地都是通过极限来定义的。在高中阶段,学生将通过丰富的具体实例,像速度、加速度等,在经历了从平均变化率到瞬时变化率的过程中,理解导数这种特殊的极限,使学生不仅可以理解导数应用的广泛性,也可以通过这些具体的实例理解极限,为进一步学习其他形式的极限,进一步理解极限的理论做一定的铺垫。二、标准对“导数及其应用”内容的基本定位1.强调对数学本质的认识,对导数数学本质的认识,不仅作为一种规则,更作为一种重要的思想、方法来学习。2.全面体现数学的价值,包括应用价值。了解导数是事物变化快慢、研究函数单调性、极大(小)值、最大(小)值和解决生活中优化
23、问题的有力工具,即导数的广泛应用性;体会微积分的科学价值和文化价值,即人类文明与科技、社会的发展对微积分创立的促进作用,以及微积分的创立在人类科学文化发展中的意义和价值。3.体现数学的教育价值。总之,要体现新一轮课程改革的理念知识与技能、过程与方法、情感态度与价值观的有机整合,具体到数学课程来说,就是要充分体现数学的价值和数学在利用数学的特点育人方面、在推动社会发展方面的价值。三、处理方式上的变化及变化的理由与原有教材相比较,标准在理念、编排、内容选择的处理上都有很大的变化,主要表现在:1.突出导数概念的本质。以往教材在编排上从极限概念开始学习,学生对极限概念认识和理解的困难,影响了对导数本质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修课 解读
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。