初三经典几何证明练习题(含标准答案).docx
《初三经典几何证明练习题(含标准答案).docx》由会员分享,可在线阅读,更多相关《初三经典几何证明练习题(含标准答案).docx(13页珍藏版)》请在咨信网上搜索。
初三几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA=15°。 求证:△PBC是正三角形.(初二) 3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F. 求证:∠DEN=∠F. 经典题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO. 2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P. 求证:AP=AQ. 3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC 求证:BC=2OP 证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N ∵OF=OD,DN∥OP∥FL ∴PN=PL ∴OP是梯形DFLN的中位线 ∴DN+FL=2OP ∵ABFG是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL 又∠FLB=∠BMA=90°,BF=AB ∴△BFL≌△ABM ∴FL=BM 同理△AMC≌△CND ∴CM=DN ∴BM+CN=FL+DN ∴BC=FL+DN=2OP 经典题(三) 1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F. 求证:CE=CF. 证明:连接BD交AC于O。过点E作EG⊥AC于G ∵ABCD是正方形 ∴BD⊥AC又EG⊥AC ∴BD∥EG又DE∥AC ∴ODEG是平行四边形 又∠COD=90° ∴ODEG是矩形 ∴EG=OD=BD=AC=AE ∴∠EAG=30° ∵AC=AE ∴∠ACE=∠AEC=75° 又∠AFD=90°-15°=75° ∴∠CFE=∠AFD=75°=∠AEC ∴CE=CF 2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F. 求证:AE=AF. 证明:连接BD,过点E作EG⊥AC于G ∵ABCD是正方形 ∴BD⊥AC,又EG⊥AC ∴∠CAE=∠CEA=∠GCE=15° 在△AFC中∠F =180°-∠FAC-∠ACF =180°-∠FAC-∠GCE =180°-135°-30°=15° ∴∠F=∠CEA ∴AE=AF ∴BD∥EG又DE∥AC ∴ODEG是平行四边形 又∠COD=90° ∴ODEG是矩形 ∴EG =OD =BD=AC=CE ∴∠GCE=30° ∵AC=EC 3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE. 求证:PA=PF.(初二) 证明:过点F作FG⊥CE于G,FH⊥CD于H ∵CD⊥CG∴HCGF是矩形 ∵∠HCF=∠GCF∴FH=FG ∴HCGF是正方形 设AB=x,BP=y,CG=z z:y=(x-y+z):x 化简得(x-y)·y=(x-y)·z ∵x-y≠0 ∴y=z 即BP=FG ∴△ABP≌△PGF ∴CG=GF ∵AP⊥FP ∴∠APB+∠FPG=90° ∵∠APB+∠BAP=90° ∴∠FPG=∠BAP 又∠FGP=∠PBA ∴△FGP∽△PBA ∴FG:PB=PG:AB 4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D. 求证:AB=DC,BC=AD.(初三) 证明:过点E作EK∥BD,分别交AC、AF于M、K,取EF的中点H, 连接OH、MH、EC ∵EH=FH ∴EM=KM ∵EK∥BD ∴ ∴OB=OD 又AO=CO ∴四边形ABCD的对角线互相平分 ∴ABCD是平行四边形 ∴AB=DC,BC=AD ∴OH⊥EF,∴∠PHO=90° 又PC⊥OC,∴∠POC=90° ∴P、C、H、O四点共圆 ∴∠HCO=∠HPO 又EK∥BD,∴∠HPO=∠HEK ∴∠HCM=∠HEM ∴H、C、E、M四点共圆 ∴∠ECM=∠EHM 又∠ECM=∠EFA ∴∠EHM=∠EFA ∴HM∥AC ∵EH=FH 经典题(四) 1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求∠APB的度数.(初二) 解:将△ABP绕点B顺时针方向旋转60°得△BCQ,连接PQ 则△BPQ是正三角形 ∴∠BQP=60°,PQ=PB=3 在△PQC中,PQ=4,CQ=AP=3,PC=5 ∴△PQC是直角三角形 ∴∠PQC=90° ∴∠BQC=∠BQP+∠PQC=60°+90°=150° ∴∠APB=∠BQC=150° 2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二) 证明:过点P作AD的平行线,过点A作PD的平行线, 两平行线相交于点E,连接BE ∵PE∥AD,AE∥PD ∴ADPE是平行四边形 ∴PE=AD, 又ABCD是平行四边形 ∴AD=BC ∴PE=BC 又∠ADP=∠ABP ∴∠AEP=∠ABP ∴A、E、B、P四点共圆 ∴∠BEP=∠PAB ∴∠PAB=∠PCB 又PE∥AD,AD∥BC ∴PE∥BC ∴BCPE是平行四边形 ∴∠BEP=∠PCB ∵ADPE是平行四边形 ∴∠ADP=∠AEP 3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三) 证明:在BD上去一点E,使∠BCE=∠ACD ∵=∴∠CAD=∠CBD ∴△BEC∽△ADC ∴ ∴AD·BC=BE·AC……………………① ∵∠BCE=∠ACD ∴∠BCE+∠ACE=∠ACD+∠ACE 即∠BCA=∠ECD ①+②得AB·CD+AD·BC =DE·AC+BE·AC =(DE+BE)·AC =BD·AC ∵=,∴∠BAC=∠BDC △BAC∽△EDC ∴ ∴AB·CD=DE·AC……………………② 4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二) 证明:过点D作DG⊥AE于G,作DH⊥FC于H,连接DF、DE ∴S△ADE=AE·DG,S△FDC=FC·DH 又S△ADE=S△FDC=S□ABCD ∴AE·DG=FC·DH 又AE=CF ∴DG=DH ∴点D在∠APC的角平分线上 ∴∠DPA=∠DPC 经典题(五) 1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2. 证明:(1)将△BPC绕B点顺时针旋转60°的△BEF,连接PE, ∵BP=BE,∠PBE=60° ∴△PBE是正三角形。 ∴PE=PB 又EF=PC ∴L=PA+PB+PC=PA+PE+EF 当PA、PE、EF在一条直线上的时候,L=PA+PE+EF的值最小(如图) 在△ABF中,∠ABP=120°∴AF= ∴L=PA+PB+PC≤ (2)过点P作BC的平行线分别交AB、AC于D、G 则△ADG是正三角形 ∴∠ADP=∠AGP,AG=DG ∵∠APD>∠AGP ∴∠APD>∠ADP ∴AD>PA…………………………① 又BD+PD>PB……………………② CG+PG>PC……………………③ ①+②+③得AD+BD+CG+PD+PG>PA+PB+PC ∴AB+CG+DG=AB+CG+AG=AB+AC>PA+PB+PC=L ∵AB=AC=1∴L<2 由(1)(2)可知:≤L<2. 2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值. 解:将△BCP绕点B顺时针旋转60°得△BEF,连接PE, 则△BPE是正三角形 ∴PE=PB ∴PA+PB+PC=PA+PE+EF ∴要使PA+PB+PC最小,则PA、PE、EF应该在一条直线上(如图) 此时AF=PA+PE+EF 过点F作FG⊥AB的延长线于G 则∠GBF=180°-∠ABF=180°-150°=30° ∴GF=,BG= ∴AF=== ∴PA+PB+PC的最小值是 3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长. 证明:将△ABP绕点B顺时针旋转90°得△BCQ,连接PQ 则△BPQ是等腰直角三角形, ∴PQ=PB=×2a=2a 又QC=AP=a ∴QP2+QC2=(2a)2+a2=9a2=PC2 ∴△PQC是直角三角形 ∴∠BQC=135° ∵BC2=BQ2+CQ2-2BQ·CQ·cos∠BQC =PB2+PA2-2PB·PAcos135° =4a2+a2-2×2a×a×(-) 解得BC= ∴正方形的边长为 4、如图,△ABC中,∠ABC=∠ACB=80°,D、E分别是AB、AC上的点,∠DCA=30°,∠EBA=20°,求∠BED的度数. 解:在AB上取一点F,使∠BCF=60°,CF交BE于G,连接EF、DG ∵∠ABC=80°,∠ABE=20°,∴∠EBC=60°,又∠BCG=60° ∴△BCG是正三角形∴BG=BC ∵∠ACB=80°,∠BCG=60°∴∠FCA=20°∴∠EBA=∠FCA 又∵∠A=∠A,AB=AC∴△ABE≌ACF∴AE=AF ∴∠AFE=∠AEF=(180°-∠A)=80° 又∵∠ABC=80°=∠AFE∴EF∥BC∴∠EFG=∠BCG=60° ∴△EFG是等边三角形∴EF=EG,∠FEG=∠EGF=∠EFG=60° ∵ACB=80°,∠DCA=30°∴∠BCD=50° ∴∠BDC=180°-∠BCD-∠ABC=180°-50°-80°=50° ∴∠BCD=∠BDC∴BC=BD前已证BG=BC∴BD=BG ∠BGD=∠BDG=(180°-∠ABE)=80° ∴∠FGD=180°-∠BGD-∠EGF=180°-80°-60°=40° 又∠DFG=180°-∠AFE-∠EFG=180°-80°-60°=40° ∴∠FGD=∠DFG∴DF=DG又EF=EG,DE=DE∴△EFD≌△EGD ∴∠BED=∠FED=∠FEG=×60°=30° 5、如图,△ABC内接于⊙O,且AB为⊙O的直径,∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,若AC=6,BC=8,求线段PD的长。 解:∵∠ACD=∠BCD ∴=∴AD=BD ∵AB为⊙O的直径∴∠ADB=90° ∴△ABD是等腰直角三角形 ∵∠ACB=90°,AC=6,BC=8 ∴AB=10 ∴AD=AB·cos∠DAB=10×=5 又AE⊥CD,∠ACD=45° ∴△ACE是等腰直角三角形∴CE=AE=AC·cos∠CAE=6×=3 在△ADE中,DE2=AD2-AE2∴DE2=∴DE= ∴CD=CE+DE=3+= ∵∠PDA=∠PCD,∠P=∠P ∴△PDA∽△PCD ∴ ∴PC=PD,PA=PD∵PC=PA+AC∴PD=PD+6解得PD= 1证明:过点G作GH⊥AB于H,连接OE ∵EG⊥CO,EF⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E、G、O、F四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO∽△FHG ∴= ∵GH⊥AB,CD⊥AB ∴GH∥CD ∴ ∴ ∵EO=CO ∴CD=GF 2证明:作正三角形ADM,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA,AP=AP ∴△MAP≌△BAP ∴∠BPA=∠MPA,MP=BP 同理∠CPD=∠MPD,MP=CP ∵∠PAD=∠PDA=15° ∴PA=PD,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP,MP=CP ∴BP=CP ∴△BPC是正三角形 3证明:连接AC,取AC的中点G,连接NG、MG ∵CN=DN,CG=DG ∴GN∥AD,GN=AD ∴∠DEN=∠GNM ∵AM=BM,AG=CG ∴GM∥BC,GM=BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 1证明:(1)延长AD交圆于F,连接BF,过点O作OG⊥AD于G ∵OG⊥AF ∴AG=FG ∵= ∴∠F=∠ACB 又AD⊥BC,BE⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF又AD⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH)=2GD 又AD⊥BC,OM⊥BC,OG⊥AD ∴四边形OMDG是矩形 ∴OM=GD ∴AH=2OM (2)连接OB、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC,OM⊥BC ∴∠BOM=∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM∴AH=BO=AO 2证明:作点E关于AG的对称点F,连接AF、CF、QF ∵AG⊥PQ ∴∠PAG=∠QAG=90° 又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF ∵E、F、C、D四点共圆 ∴∠AEF+∠FCQ=180° ∵EF⊥AG,PQ⊥AG ∴EF∥PQ ∴∠PAF=∠AFE ∵AF=AE ∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F、C、A、Q四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP 在△AEP和△AFQ中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP≌△AFQ ∴AP=AQ 13 / 13- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 经典 几何 证明 练习题 标准答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文