选修1-1教案3.3.1函数的单调性与导数.doc
《选修1-1教案3.3.1函数的单调性与导数.doc》由会员分享,可在线阅读,更多相关《选修1-1教案3.3.1函数的单调性与导数.doc(5页珍藏版)》请在咨信网上搜索。
个人收集整理 勿做商业用途 课题:3.3。1函数的单调性 教学目的: 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法 教学重点:利用导数判断函数单调性 教学难点:利用导数判断函数单调性 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 以前,我们用定义来判断函数的单调性. 对于任意的两个数x1,x2∈I,且当x1<x2时,都有f(x1)<f(x2),那么函数f(x)就是区间I上的增函数。 对于任意的两个数x1,x2∈I,且当x1<x2时,都有f(x1)>f(x2),那么函数f(x)就是区间I上的减函数。 在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单 教学过程: 一、复习引入: 1。 常见函数的导数公式: ; ; ; ; ; ; 2.法则1 . 法则2 , 法则3 二、讲解新课: 1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数的图像 可以看到: y=f(x)=x2-4x+3 切线的斜率 f′(x) (2,+∞) 增函数 正 >0 (-∞,2) 减函数 负 <0 在区间(2,+∞)内,切线的斜率为正,函数y=f(x)的值随着x的增大而增大,即>0时,函数y=f(x) 在区间(2,+∞)内为增函数;在区间(-∞,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即0时,函数y=f(x) 在区间(-∞,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内>0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内<0,那么函数y=f(x) 在为这个区间内的减函数 2.用导数求函数单调区间的步骤: ①求函数f(x)的导数f′(x). ②令f′(x)>0解不等式,得x的范围就是递增区间. ③令f′(x)<0解不等式,得x的范围,就是递减区间。 三、讲解范例: 例1确定函数f(x)=x2-2x+4在哪个区间内是增函数, 哪个区间内是减函数. 解:f′(x)=(x2-2x+4)′=2x-2. 令2x-2>0,解得x>1。 ∴当x∈(1,+∞)时,f′(x)>0,f(x)是增函数。 令2x-2<0,解得x<1. ∴当x∈(-∞,1)时,f′(x)<0,f(x)是减函数。 例2确定函数f(x)=2x3-6x2+7在哪个区间内是增函数, 哪个区间内是减函数。 解:f′(x)=(2x3-6x2+7)′=6x2-12x 令6x2-12x>0,解得x>2或x<0 ∴当x∈(-∞,0)时,f′(x)>0,f(x)是增函数。 当x∈(2,+∞)时,f′(x)>0,f(x)是增函数. 令6x2-12x<0,解得0<x<2. ∴当x∈(0,2)时,f′(x)<0,f(x)是减函数. 例3证明函数f(x)=在(0,+∞)上是减函数. 证法一:(用以前学的方法证)任取两个数x1,x2∈(0,+∞)设x1<x2。 f(x1)-f(x2)= ∵x1>0,x2>0,∴x1x2>0 ∵x1<x2,∴x2-x1>0, ∴>0 ∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴f(x)= 在(0,+∞)上是减函数。 证法二:(用导数方法证) ∵=()′=(-1)·x-2=-,x>0, ∴x2>0,∴-<0。 ∴, ∴f(x)= 在(0,+∞)上是减函数. 点评:比较一下两种方法,用求导证明是不是更简捷一些.如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性. 例4确定函数的单调减区间 例5已知函数y=x+,试讨论出此函数的单调区间。 解:y′=(x+)′ =1-1·x-2= 令>0。 解得x>1或x<-1。 ∴y=x+的单调增区间是(-∞,-1)和(1,+∞). 令<0,解得-1<x<0或0<x<1。 ∴y=x+的单调减区间是(-1,0)和(0,1) 四、课堂练习: 1.确定下列函数的单调区间 (1)y=x3-9x2+24x (2)y=x-x3 (1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4) 令3(x-2)(x-4)>0,解得x>4或x<2。 ∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2) 令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的单调减区间是(2,4) (2)解:y′=(x-x3)′=1-3x2=-3(x2-)=-3(x+)(x-) 令-3(x+)(x-)>0,解得-<x<. ∴y=x-x3的单调增区间是(-,). 令-3(x+)(x-)<0,解得x>或x<-. ∴y=x-x3的单调减区间是(-∞,-)和(,+∞) 2。讨论二次函数y=ax2+bx+c(a>0)的单调区间。 解:y′=(ax2+bx+c)′=2ax+b, 令2ax+b>0,解得x>- ∴y=ax2+bx+c(a>0)的单调增区间是(-,+∞) 令2ax+b<0,解得x<-. ∴y=ax2+bx+c(a>0)的单调减区间是(-∞,-) 3.求下列函数的单调区间(1)y= (2)y= (3)y=+x (1)解:y′=()′= ∵当x≠0时,-<0,∴y′<0. ∴y=的单调减区间是(-∞,0)与(0,+∞) (2)解:y′=()′ 当x≠±3时,-<0,∴y′<0。 ∴y=的单调减区间是(-∞,-3),(-3,3)与(3,+∞). (3)解:y′=(+x)′. 当x>0时+1>0,∴y′>0. ∴y=+x的单调增区间是(0,+∞) 五、小结 : f(x)在某区间内可导,可以根据>0或<0求函数的单调区间,或判断函数的单调性,或证明不等式。以及当=0在某个区间上,那么f(x)在这个区间上是常数函数 六、课后作业:- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 教案 3.3 函数 调性 导数
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文