概率论与数理统计答案第四版第2章(浙大).doc
《概率论与数理统计答案第四版第2章(浙大).doc》由会员分享,可在线阅读,更多相关《概率论与数理统计答案第四版第2章(浙大).doc(21页珍藏版)》请在咨信网上搜索。
1、 考虑为期一年的一张保险单,若投保人在投保一年后因意外死亡,则公司赔付20万元,若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。 解:设X为公司的赔付金额,X=0,5,20 P(X=0)=1-0.0002-0.0010=0.9988 P(X=5)=0.0010 P(X=20)=0.0002 X 0 5 20 P 0.9988 0.0010 0.0002 2.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以X表示取出的三只中的最大号码,写出随机变量的分布律. 解:方法一: 考虑到5个球取3个一共有C53 =10种取法,数量不多可以枚举来解此题。设样本空间为S S={123,124,125,134,135,145,234,235,245,345 } 易得,P{X=3}=110;P{X=4}=310;P{X=5}=610; X 3 4 5 Pk 1/10 3/10 6/10 方法二:X的取值为3,4,5 当X=3时,1与2必然存在 ,P{X=3}= C22C53 =110; 当X=4时,1,2,3中必然存在2个, P{X=4}= C32C53 =310; 当X=5时,1,2,3,4中必然存在2个, P{X=5}= C42C53 =610; X 3 4 5 Pk 1/10 3/10 6/10 (2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,试求X的分布律. 解:P{X=1}= P (第一次为1点)+P(第二次为1点)- P(两次都为一点) = 16+16-136 = 1136; P{X=2}= P (第一次为2点,第二次大于1点)+P(第二次为2点,第一次大于1点)- P(两次都为2点) = 16×56+16×56-136 = 936; P{X=3}= P (第一次为3点,第二次大于2点)+P(第二次为3点,第一次大于2点)- P(两次都为3点) = 16×46+16×46-136 = 736; P{X=4}= P (第一次为4点,第二次大于3点)+P(第二次为4点,第一次大于3点)- P(两次都为4点) = 16×36+16×36-136 = 536; P{X=5}= P (第一次为5点,第二次大于4点)+P(第二次为5点,第一次大于4点)- P(两次都为5点) = 16×26+16×26-136 = 336; P{X=6}= P (第一次为6点,第二次大于5点)+P(第二次为6点,第一次大于5点)- P(两次都为6点) = 16×16+16×16-136 = 136; X 1 2 3 4 5 6 Pk 11/36 9/36 7/36 5/36 3/36 1/36 3.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样.以X表示取出的次品的只数. (1)求X的分布律. 解:P{X=0}= C133C153 =2235; P{X=1}= C13 2C21C153 =1235; P{X=2}= C131C22C153 =135; X 0 1 2 Pk 22/35 12/35 1/35 (2)画出分布律的图形. 4、进行独立重复试验,设每次试验的成功率为p,失败概率为q=1-p(0<p<1) (1)将试验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律。(此时称X服从以p为参数的几何分布) (2)将试验进行到出现r次成功为止,以Y表示所需的试验次数,求Y得分布律。(此时称Y服从以r,p为参数的帕斯卡分布或负二项分布) (3)一篮球运动员的投篮命中率为45%。以X表示他首次投中时累计已投篮的次数,写出X的分布律,并计算X取得偶数的概率 解:(1)k=1,2,3,…… P(X=k)=pqk-1 (2)k=r+1,r+2,r+3, …… P(Y=k)=Ck-1r-1prqk-r (3)k=1,2,3, …… P(X=k)=0.45(0.55)k-1, 设p为X取得偶数的概率 P=P{X=2}+ P{X=4}+ ……+ P{X=2k} =0.45(0.55)1+0.45(0.55)3……+0.45(0.55)2k-1 =1131 5. 一房间有3扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。假定鸟是没有记忆的,它飞向各扇窗子是随机的。 (1) 以X表示鸟为了飞出房间试飞的次数,求X的分布律。 (2) 户主声称,他养的一只鸟是有记忆的,它飞向任一窗子的尝试不多于一次。以Y表示这只聪明的鸟为了飞出房间试飞的次数。如户主所说是确实的,试求Y的分布律。 (3)求试飞次数X小于Y的概率和试飞次数Y小于X的概率。 解: (1)由题意知,鸟每次选择能飞出窗子的概率为1/3,飞不出窗子的概率为2/3,且各次选择之间是相互独立的,故X的分布律为: P(X=k)=13*(23)k-1 ,k=1,2,3…… X 1 2 3 PK 13 29 427 (2)Y的可能取值为1,2,3,其分布律为 方法一: P(Y=1)=13 P(Y=2)= 23*12=13 P(Y=3)= 23*12*1=13 方法二: 由于鸟飞向各扇窗户是随机的,鸟飞出指定窗子的尝试次数也是等可能的。 即P(X=1)=P(Y=2)=P(X=3)= 13 Y 1 2 3 PK 13 13 13 (3)设试飞次数X小于Y为事件A,Y小于X为事件B。普通鸟和聪明鸟的选择是独立的 X小于Y的情况有:① X=1, Y=2 ② X=1, Y=3 ③ X=2, Y=3 故P(A)=P(X=1)*P(Y=2)+ P(X=1)*P(Y=3)+ P(X=2)*P(Y=3) = 13*13+29*13+13*13=827 Y小于X的情况有:① Y=1, X≥2 ② Y=2, X≥3 ③ Y=3, X≥4 故P(B)=P(Y=1)*P(X≥2)+P(Y=2)*P(X≥3)+P(Y=3)*P(X≥4) =P(Y=1)*[1-P(X=1)]+P(Y=2)*[1-P(X=1)-P(X=2)]+P(Y=3)*[1-P(X=1)-P(X=2)-P(X=3)] = 13*(1- 13)+ 13*(1- 13 - 29)+ 13*(1- 13 - 29 - 427) = 3881 6. 一大楼装有5台同类型的供水设备。设各台设备是否被使用相互独立。调查表明在任一时刻t每台设备被使用的概率为0.1,问在同一时刻, (1) 恰有2台设备被使用的概率是多少? (2) 至少有3台设备被使用的概率是多少? (3) 至多有3台设备被使用的概率是多少? (4) 至少有1台设备被使用的概率是多少? 解:设同一时刻被使用的设备数为X,试验次数为5且每次试验相互独立,显然X满足二次分布X (1) P(X=2)=C52*0.12*0.93=0.0729 (2) P(X≥3)=P(X=3)+P(X=4)+P(X=5)= C53*0.13*0.92+C54*0.14*0.9+0.15=0.00856 (3) P(X≤3)=1-P(X=4)-P(X=5)=1-C54*0.14*0.9-0.15=0.99954 (4) P(X≥1)=1-P(X=0)=1-0.95=0.40951 7. 设事件A在每次试验发生的概率为0.3。A发生不少于3次时,指示灯发出信号。 (1) 进行了5次重复独立试验,求指示灯发出信号的概率。 (2) 进行了7次重复独立试验,求指示灯发出信号的概率。 解:设进行5次重复独立试验指示灯发出信号为事件B,进行7次重复独立试验指示灯发出信号为事件C。用X表示n次重复独立试验中事件A发生的次数,则 P(X=k)= Cnk*0.3k*0.7n-k, k=1,2,3…… (1) P(B)= P(X=3)+P(X=4)+P(X=5)= C53*0.33*0.72+C54*0.34*0.7+0.35≈0.163 或: P(B)= 1-P(X=0)-P(X=1)-P(X=2)=1- 0.75- C51*0.3*0.74- C52*0.32*0.73≈0.163 (2) P(C)=1- P(X=0)-P(X=1)-P(X=2)=1-0.77- C71*0.3*0.76- C72*0.32*0.75≈0.353 8.甲、乙两人投篮,投中的概率分别为0.6, 0.7. 今各投三次,求: (1)两人投中次数相等的概率 (2)甲比乙投中次数多的概率 解:记投三次后甲投中次数为X,乙投中次数为Y,,设甲投中a次,乙投中b次的概率为 P(X=a,Y=b) (1) 设两人投中次数相等为事件A 因为甲、乙两人每次投篮相互独立且彼此投篮相互独立 则P(A)= P(X=0,Y=0)+P(X=1,Y=1)+P(X=2,Y=2)+P(X=3,Y=3) =(0.4)3×(0.3)3+C31×0.6×(0.4)2×C31×0.7×(0.3)2+C32×(0.6)2×0.4×C32×(0.7)2×0.3 +(0.6)3×(0.7)3 =0.321 (2) 设甲比乙投中次数多为事件B 则P(B)=P(X=1,Y=0)+P(X=2,Y=0)+P(X=3,Y=0)+P(X=2,Y=1)+P(X=3,Y=1)+P(X=3,Y=2) =C31×0.6×(0.4)2×(0.3)3+C32×(0.6)2×0.4×(0.3)3+(0.6)3×(0.3)3+C32×(0.6)2×0.4×C31×0.7×(0.3)2+(0.6)3×C31×0.7×(0.3)2+(0.6)3×C32×(0.7)2×0.3 =0.243 9.有一大批产品,其验收方案如下,先作第一次检验:从中任取10件,经检验无次品接受这批产品,次品数大于2拒收;否则作第二次检验,其做法是从中再任取5件,仅当5件中无次品时接受这批产品。若产品的次品率为10%,求: (1)这批产品经第一次检验就能接受的概率 (2)需作第二次检验的概率 (3)这批产品按第二次检验的标准被接受的概率 (4)这批产品在第一次检验未能作决定且第二次检验时被通过的概率 (5)这批产品被接受的概率 解:记第一次检验抽取的10件中次品个数X,则X~B(10 , 0.1)第二次检验抽取的5件中次品个数Y,则Y~B(5 , 0.1) (1) 设事件A为“这批产品第一次检验就能接受”, P(A)=(0.9)10≈ 0.349 (2)设事件B为“需作第二次检验”,即第一次检验次品数为1或2 P(B)= P(X=1)+P(X=2) =C101×(0.9)9×0.1+C102×(0.9)8×(0.1)2 ≈ 0.581 (3) 设事件C为“这批产品按第二次检验的标准被接受” P(C)=(0.9)5≈ 0.590 (4)设事件D为“这批产品在第一次检验未能作决定且第二次检验时被通过” 由(2)(3)知事件B、C相互独立 P(D)= P(B)× P(C) ≈ 0.581 × 0.590 ≈ 0.343 (5)设事件E为“这批产品被接受的概率”,其中包括事件A和事件D,A与D互斥 P(E)=P(A)+P(D) ≈ 0.349 + 0.343 = 0.692 10.有甲、乙两种味道和颜色都极为相似的名酒各4杯,如果从中挑4杯,能将甲种酒全部挑出来,算是试验成功一次。 (1)某人随机地去猜,问他试验成功一次的概率是多少? (2) 某人声称他通过品尝能区分两种酒,他连续试验10次,成功3次,试推断他是猜对的,还是他确有区分的能力(设每次试验是相互独立的) 解:(1)设事件A为“试验成功一次”,题意为在8杯中挑4杯,恰好挑到事件A 由题意知P(A)=1C84=170 (2)设事件B为“他连续试验10次,成功3次” 由于每次试验相互独立 则P(B)=C103×(170)3×(6970)7 =310000 此概率太小在试验中竟然发生了,按实际推断原理,认为他确实有区分的能力。 11.尽管在几何教科书中已经讲过用圆规和直尺三等分一个任意角是不可能的,但每年总有一些“发明家”撰写关于仅用圆规和直尺将角三等分的文章。设某地区每年撰写此类文章篇数X服从参数为6的泊松分布。求明年没有此类文章的概率。 解: 设明年没有此类文章的概率为P,又X服从泊松分布,得 PX=k=λke-λk! 令λ=6,则 PX=0=60e-60!=e-6=2.5×10-3 12.一电话总机每分钟收到呼叫的次数服从参数为4的泊松分布。求 (1)某一分钟恰有8次呼唤的概率; (2)某一分钟的呼唤次数大于3的概率。 解: 设每分钟收到呼叫的次数为随机变量X,呼叫k次的概率为P,同理有 PX=k=λke-λk!=4ke-4k! (1)令k=8,则有 PX=8=4ke-4k!=48e-48!=0.0298 (2)依题意,X>3,即 PX>3=1-PX≤3=1-PX=0-PX=1-PX=2-PX=3 =1-e-4-4e-4-42e-42!-43e-43! =1-713e-4=0.5665 13.某公安局在长度为t的时间间隔内收到的紧急呼叫的次数X服从参数为(1/2)t的泊松分布,而与时间间隔的起点无关(时间以小时计)。 (1) 求某一天中午12点至下午3点未收到紧急呼叫的概率; (2) 求某一天中午12点至下午5点至少收到1次紧急呼叫的概率。 解: (1)设某一天中午12点至下午3点未收到紧急呼叫的概率为P,时间间隔长度t=3, 依题意有 PX=0=(t2)ke-t2k!=(32)0e-320!=e-32=0.2231 (2)依题意,即X≥1,时间间隔长度t=5,则 PX≥1=1-PX=0 =1-(t2)ke-t2k! =1-(52)0e-520! =1-e-52=0.9179 14.某人家中在时间间隔t(小时)内接到电话的次数X服从参数为2t的泊松分布。 (1)若他在外出计划用时10分钟,问其间有电话铃响一次的概率是多少? (2)若他希望外出时没有电话的概率至少为0.5,问他外出应控制最长时间是多少? 解: (1) 设其间有电话铃响一次的概率为P,t=1/6,依题意有 PX=1=(2t)ke-2tk!=(13)1e-131!=13e-13=0.2388 (2) 外出时没有电话的概率至少为0.5, 即为 PX=0≥0.5 PX=0=2tke-2tk!=2t0e-2t0!≥0.5 即 e-2t≥0.5 求解得 t≤12ln2=0.3466 (小时) 即外出时间不得超出20.79分钟. 15.保险公司在一天内承保了5000张相同年龄,为期一年的寿险保单,每人一份,在合同有效期内若投保人死亡,则公司需赔付3万元。设在一年内,该年龄段的死亡率为0.0015,且各投保人是否死亡相互独立。求该公司对于这批投保人的赔付总额不超过30万元的概率(利用泊松定理计算)。 解:设投保人在一年内死亡人数为X,则X~b(5000,0.0015),若公司赔付不超过30万元,则死亡人数不该超过303=10个人, P{X≤10}=k=010(C5000k)(0.0015)k(0.9985)5000-k 根据泊松定理,λ=np=5000×0.0015=7.5 P{X≤10}≈k=0107.5ke-7.5k!=0.8622. 16.有一繁忙的汽车站,每天有大量汽车通过,设一辆汽车在一天的某段时间内出事故的概率为0.0001。在某天的该时间段内有1000辆汽车通过。问出事故的车辆数不小于2的概率是多少?(利用泊松定理计算) 解:设某天该时段汽车站汽车出事故的辆数为X,则X~b(1000,0.0001), 所求为P{X≥2}=1-P{X=0}-P{X=1}. 其中,根据泊松定理,λ=np=1000×0.0001=0.1. P{X=k}=Cnkpk(1-p)n-k≈λke-λk!. 所以,P{X≥2}=1-P{X=0}-P{X=1}≈1-e-0.1-e-0.1×0.1=0.0047. 17.(1)设X服从(0-1)分布,其分布律为P{X=k}=pk(1-p)1-k,k=0,1,求X的分布函数,并作出其图形。 (2)求第2题(1)中的随机变量的分布函数。 解: (1) X服从(0-1)分布,即,当X=0,pk=1-p;当X=1,pk=p. 当x<0,F(x)= 0; 当0≤x<1,F(x)=1-p; 当x≥1,F(x)=(1-p)+p=1. X的分布函数为Fx=0, &x<01-p,0≪x<11, &x≥1, (2)第2题(1)中,X的分布律为 所以,当X<3,Fx=0; 3≪X<4,Fx=0.1; 4≪X<5,Fx=0.1+0.3=0.4; 5≪X,Fx=0.4+0.6=1. 所以,X的分布函数为 F(x)=0,x<3,0.1,3≤x<4,0.4,4≤x<5,1,x≥5. 18.在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标。设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例。试求X的分布函数。 解:当x<0,P(x)=0; 当0≤x≤a,P(x)=kx,(其中k表示概率与区间长度的比例关系) 由于题中说明,在区间[0,1]上任意投掷质点,所以,质点落在区间内是必然事件,所以P(0≤x≤a)=ka=1,所以k=1a. 所以X的分布函数为 F(x)=0,x<0xa,0≤x≤a1,x>a 19.以X表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),X的分布函数是FX(x)=1-e-0.4x,x>0,0,x≤0.求下列概率: (1)P{至多3分钟}. (2)P{至少4分钟}. (3)P{3分钟至4分钟之间}. (4)P{至多3分钟或至少4分钟}. (5)P{恰好2.5分钟}. 解:(1)P{至多3分钟}=P{X≤3}=FX(3)=1-e-0.4*3 =1-e-1.2 (2)P{至少4分钟}=P{X≥4}=1-P{X<4}=1-FX(4)=e-0.4*4=e-1.6 (3)P{3分钟至4分钟之间}=P{3≤X≤4}=FX(4)-FX(3)=(1-e-0.4*4)-(1-e-0.4*3)=e-1.2-e-1.6 (4)P{至多3分钟或至少4分钟}=P{X≤3UX≥4}=P{X≤3}+P{X≥4}=(1-e-1.2)+e-1.6 =1+e-1.6-e-1.2 (5)P{恰好2.5分钟}=P{X=2.5}=0 20.设随机变量X的分布函数为FX(x)=0,x<,1lnx,1≤x<e,1,x≥e. (1)求P{X<2},P{0<X≤3},P{2<X<2.5}. (2)求概率密度fX(x). 解:(1)根据连续型随机变量的分布函数的定义和性质可得 P{X<2}=FX(2)=ln2 P{0<X≤3}=FX(3)-FX(0)=1-0=1 P{2<X<2.5}=FX(2.5)-FX(2)=ln2.5-ln2=ln1.25 (2)根据概率密度的定义可得 fX(x)=dFX(x)dx=1x,1<x<e0,其他 21.设随机变量X的概率密度为 (1)f(x)=21-1x2,1≤x≤20,其他. (2)f(x)=x,0≤x<1,2-x,1≤x<2,0,其他 求X的分布函数F(x),并画出(2)中f(x)及F(x)的图形. 解:(1)F(x)=P(X≤x)=-∞xf(t)dt 当x<1时,F(x)=-∞x0dt=0 当1≤x≤2时,F(x)=-∞10dt+1x21-1t2dt =2(x+1x -2) 当2<x时,F(x)=-∞10dt+1221-1t2dt+2x0dt =1 故分布函数为F(x)=0,x<12x+1x -2,1≤x≤21,x>2 (2)F(x)=P(X≤x)=-∞xf(t)dt 当x<0时,F(x)=-∞x0dt=0 当0≤x<1时,F(x)=-∞00dt+0xtdt =x22 当1≤x<2时,F(x)=-∞00dt+01tdt+1x(2-t)dt=2x- x22 -1 当2≤x时,F(x)=-∞00dt+01tdt+12(2-t)dt+2x0dt =1 故分布函数为F(x)=0,x<0x22,0≤x<12x- x22 -1,1≤x<21,2≤x F(x)和F(x)的图形如下 22.(1)分子运动速度的绝对值X服从麦克斯韦(Maxwell)分布,其概率密度为: f(x)=Ax2e-x2/b, x>0,0, 其他. 其中b=m/(2kT),k为玻尔兹曼常数,T为绝对温度,m是分子的质量,试确定常数A。 (2)研究了英格兰在1875年~1951年期间,在矿山发生导致不少于10人死亡的事故的频繁程度。得知相继两次事故之间的时间T(日)服从指数分布,其概率密度为 fT(t)=1241e-t/241, t>0,0, 其他. 求分布函数F(t),并且求概率P(50<T<100). (1) 解:由题意可知-∞∞fxdx=1, 可得-∞∞fxdx=-∞00dx+0∞Ax2e-x2/bdx =-Ab2xe-x2b|0∞+Ab20∞e-x2bdx 不妨令xb=u 则原式可写为Abb20∞e-u2du=Abb4π 由此可得A=4bbπ (2) 解:当t<0时,FTt=-∞tfTtdt=-∞t0dt=0 当t>0时,FTt=-∞tfTtdt=-∞t0dt+0t1241e-t/241dt=1-e-t241 故所求的分布函数为 FT(t)=1-e-t241, t>0,0, 其他. 而P{50<T<100}= FT(100)- FT(50)=e-50241-e-100241 23.某种型号器件的寿命X(以小时计)具有概率密度 f(x)=1000x2, x>1000,0, 其他. 现有一大批此种器件(设各种器件损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率是多少? 解:任取一只该种器件,其寿命大于1500h的概率为 P=1500∞1000x2dx=-1000x|1500∞=23 任取5只这种器件,其中寿命大于1500小时的只数记为X,则X~b(5,23). 故所求概率为P{X≥2}=1-P{X=0}-P{X=1} =1-1-232-C51231-234=232243 24.设顾客在某银行的窗口等待服务时间X(min)服从指数分布,其概率密度为 fx(x)=15e-x/5, x>0,0, 其他. 某顾客在窗口等待服务,若超过10min,他就离开,他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求P(Y≥1). 解:顾客在窗口等待服务超过10min的概率为 P=10∞fx(x)dx=10∞15e-x5dx=e-2 故顾客去银行一次因未等到服务而离开的概率为e-2,从而Y~b(5, e-2) 那么,Y的分布律为P{Y=k}=C5k(e-2)k(1-e-2)5-k, k=0,1,2,3,4,5. P{Y≥1}=1-P{Y=0}=1-(1-e-2)5=0.5167 25、设K在(0,5)服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率。 解: 4x2+4Kx+K+2=0有实根 即 (4K)2-4×4×(K+2)≥0 解得 K≤-1 或 K≥2 由题知K在(0,5)服从均匀分布 即 0<K<5 设 方程4x2+4Kx+K+2=0有实根为事件A P(A)=P2≤K<5=2515dx=35 26、设X~N(3,22) (1)求P2<X≤5,P-4<X≤10,P|X|>2,PX>3 (2)确定c使得PX>c=PX≤c (3)设d满足PX>d≥0.9,问d至多为多少? 解:z=X-μσ~N0,1 (1) P2<X≤5=P2-32<X-32≤5-32 =P-12<X-32≤1 =∅1-∅-12 =∅1-1+∅12=0.5328 P-4<X≤10=P-72<X-32≤72=2∅72-1=0.9996 PX>2=PX<-2+PX>2= PX-32<-52}+P{X-32>-12 =∅-52+∅12 =0.6977 PX>3=1-PX-32<3-32 =1-∅0 =0.5 (2) PX>c=PX≤c 即PX-32>c-32=PX-32≤c-32 1-PX-32≤c-32=PX-32≤c-32=0.5 即c-32=0 可得c=3 (3) PX>d≥0.9 即PX-32>d-32≥0.9 即∅-d-32≥0.9 即-d-32≥1.29 即d≤0.42 则d至多为0.42 27、某地区18岁的女青年的血压(收缩压,以mmHg计)服从N(110,122) 分布,在该地区任选一18岁的女青年,测量她的血压X,求 (1)PX≤105,P100<X≤120; (2)确定最小的x,使PX>x≤0.05. 解:z=X-μσ~N0,1 (1) PX≤105=PX-11012≤105-11012 =∅-0.417=0.3383 P100<X≤120=P-0.833<X-11012<0.833 =2×∅0.833-1=0.5952 (2) PX>x≤0.05 即PX-11012>x-11012≤0.05 即PX-11012<x-11012≥0.95 即x-11012≥1.65 x≥129.8 则x最小为129.8,使得PX>x≤0.05. 28.由某机器生产的螺栓的长度(cm)服从参数μ=10.05,σ=0.06的正态分布。规定长度在范围10.05±0.12内为合格品,求一螺栓为不合格品的概率。 解:设螺栓的长度为X。 ∵0.12=2σ, 根据3σ法则, 产品合格的概率P合格= P10.05-0.12≪X≪10.05+0.12=95.44%∴不合格概率:P不合格=1-P合格=4.56% 29.一工厂生产的某种元件的寿命(h)X服从参数为μ=160,σ(σ>0)的正态分布,若要求P{120<X≪200}≫0.80,允许σ最大为多少? 解:由正态分布图形得,σ越小时,X落在μ附近的概率越大。 当P120<X≪200=P160-40<X≪160+40=0.8时 ϕ40σ=0.9 根据标准正态分布表查得, 40σ=1.28 ∴σ≈31.20 即σ最大为31.20. 30.设在一电路中,电阻两段的电压(V)服从N120,22,今独立测量了5次,试确定2次测定值落在区间[118,122]之外的概率。 解:设第i次测定值为Xi, i=1,2,3,4,5,则Xi-N(120,2^2) P{118≤Xi≤122}=φ()-φ() =φ(1)-φ(-1) =2φ(1)-1 =0.6826 P{Xi∉【118,122】}=1-P{118≤X≤122} =0.3174 (i=1,2,3,4,5) ∵Xi之间相互独立 ∴若以Y表示5次测量其测定值Xi落在【118,122】之外的个数 Y~b(5,0.3174)∴所求概率 P{Y=2}=C2 5(0.3174)^2(0.6826)^3 =0.3204 31.某人上班,自家里去办公室要经过一个交通指示灯,这指示灯有80%时间亮红灯,此时他在指示灯旁等待直至绿灯亮。等待时间在区间[0,30](以秒计)服从均匀分布。以X表示他的等待时间,求X的分布函数F(x)。画出F(x)的图形,并问X是否为连续性随机变量,是否为离散型的?(要说明理由) 解 当他到达交通指示灯处时,若是亮绿灯则等待时间为0,若是亮红灯则等待时间X服从均匀分布。记“指示灯亮绿灯”为事件A。则对于固定的x≥0,全概率公式有 PX≤x=PX≤xAPA+PX≤xAPA 当0≤x<30时,PX≤x=1×0.2+x30×0.8=0.2+2x75 当x≥30时,PX≤x=1×0.2+1×0.8=1 于是得到X的分布函数为 Fx=PX≤x=0 x≤0 0.2+2x75 0≤x<30 1 x≥0 F(x)的图像如图所示 因F(x)在x=0处有不连续点,故随机变量X不是连续型,又因不存在一个可列的点集,使得在这个点集上X取值的概率为1,所以随机变量也不是离散型的,X是混合型随机变量。 32 设f(x),g(x)都是概率密度函数,求证 h(x)=αf(x)+(1-α)g(x),0≤α≤1也是一个概率函数。 解 因为f(x),g(x)都是概率密度函数,故有 f(x)≥0,g(x)≥0 且-∞+∞fxdx=1, -∞+∞g(x)dx=1. 因0≤α≤1,故1-α≥0,所以有 αf(x)≥0 , (1-α)g(x)≥0,于是h(x)≥0. 又-∞+∞h(x)dx=α-∞+∞fxdx+1-α-∞+∞gxdx=α+1-α=1 所以h(x)是一个概率分布函数。 33.设随机变量X的分布律为 X -2 -1 0 1 3 Pk 15 16 15 115 1130 求Y=X²的分布律。 解 Y=X²的所有取值为0,1, 4, 9. PY=0=PX=0=15 PY=1=PX=1+P{X=-1}=115+16=730 PY=4=PX=2=15 PY=9=PX=3=1130 所以Y的分配率为 Y 0 1 4 9 Pk 15 730 15 1130 34. 设随机变量X在区间(0,1)服从均匀分布。 (1) 求的概率密度。 (2) 求的概率密度。 解:(1)由X服从均匀分布可知 由可得 故 (2) 由X服从均匀分布可知 由可得 故 35. 设X~N(0,1)。 (1)求的概率密度。 (2)求的概率密度. (3)求的概率密度. 解:由X~N(0,1)可知 (1) 由可得 (2) 当时,=0,=0 当时, 综上 (3) 综上 36、 (1)设随机变量X的概率密度为。 (2)设随机变量X的概率密度为,求的概率密度。 解:(1) (2) 综上 37、设随机变量X的概率密度为f(x)= 2xπ², 0<x<π 0, 其他 求Y=sinX 的概率密度 解:∵X在(0,π)取值 ∴Y=sinX在(0,1)取值 ∴当y<0或y>1时,f(y)=0 当0≤y≤1时,Y的分布函数为 F(y)=P{Y≤y}=P{0≤Y≤y}=P{0≤sinX≤y} =P{(0≤X≤arcsiny)∪(π-arcsiny≤X≤π)} =P{0≤X≤arcsiny}+P{π-arcsiny≤X≤π} = 0arcsiny2xπ²dx+π-arcsinyπ2xπ²dx = 1π²(arcsiny)²+1-1π²(π-arcsiny)² = 2πarcsiny ∴当0≤y≤1时,f(y)=ddyF(y)=2π1-y² ∴所求概率密度为: 2π1-y² , 0≤y≤1 f(y)=- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 答案 第四 浙大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文