分享
分销 收藏 举报 申诉 / 3
播放页_导航下方通栏广告

类型2018简版二次函数压轴题之面积最值.doc

  • 上传人:精****
  • 文档编号:2554471
  • 上传时间:2024-05-31
  • 格式:DOC
  • 页数:3
  • 大小:190.47KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2018 二次 函数 压轴 面积
    资源描述:
    2018二次函数压轴题之面积最值 第 3 页 共 3 页 一、知识点睛 1. 坐标系中处理面积问题,通常有以下三种思路: ①__________________(规则图形); ②__________________(分割求和、补形作差); ③__________________(例:同底等高). 2. 处理方法举例①割补求面积(铅垂法): ②转化求面积: 如图,满足S△ABP=S△ABC的点P都在直线l1,l2上. 二、精讲精练之一次函数面积问题 1. 如图,在平面直角坐标系xOy中,已知A(-1,3),B(3,-2),则△AOB的面积为___________. 2. 如图,直线y=-x+4与x轴、y轴分别交于点A、点B,点P的坐标为(-2,2),则S△PAB=___________. 3. 如图,在平面直角坐标系xOy中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积. 4. 如图,直线与x轴、y轴分别交于A,B两点,点C的坐标为(1,2),坐标轴上是否存在点P,使S△ABP=S△ABC?若存在,求出点P的坐标;若不存在,请说明理由. 二、精讲精练之二次函数面积问题 二次函数背景下的面积问题,对于两定点一动点的斜三角形面积常利用铅垂法(从动点引竖直的线)分割来求,做题时需要注意自变量的取值范围。 1. 已知二次函数的图象与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C(0,-6).如图,P为第三象限内抛物线上的一个动点,设△APC的面积为S,则S与点P的横坐标之间的函数关系式及S的最大值分别为( ) 2. 已知抛物线经过三点,如图,若P是第一象限内抛物线上的一个动点,则四边形ABPC的最大面积为( ) 3. 如图,直线与x轴、y轴分别交于点A,C,过A,C两点的抛物线与x轴交于另一点B(1,0).若D为直线AC上方的抛物线上一动点,则当点D到直线AC的距离DE最大时,点D的坐标为( ) 4. 如图,在平面直角坐标系xOy中,点A,B分别在x轴、y轴的正半轴上,且OA=1,tan∠BAO=3,将Rt△AOB绕原点O逆时针旋转90°,得到△DOC,抛物线经过A,B,C三点.设抛物线上一点P的横坐标为m,连接PC,PB.若,且存在△PBC,则△PBC的面积最大时m的值为( ) 5. 已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0). (1)求该抛物线的解析式; (2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ。当△CQE的面积最大时,求点Q的坐标; 6. 已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图像经过点A(m,0),B(0,n),如图所示. (1)求这个抛物线的解析式; (2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积; (3) P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标. 7. (河南省2015年T23).(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式; (2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE的周长最小时“好点”的坐标. C B A y O E D x 备用图 P E O F C D B A x y (4)
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2018简版二次函数压轴题之面积最值.doc
    链接地址:https://www.zixin.com.cn/doc/2554471.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork