数学实验Cauchy中值定理.doc
《数学实验Cauchy中值定理.doc》由会员分享,可在线阅读,更多相关《数学实验Cauchy中值定理.doc(7页珍藏版)》请在咨信网上搜索。
《数学基础实验》报告 题 目:Cauchy中值定理 学生姓名:左志豪 学 号:1502010817 专业班级:理科1501班 2016年 7月20日 一、 问题背景与提出 柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。 二、 实验目的 根据教材Lagrange中值定理编程方法,并查阅Cauchy中值定理的相关资料,编写通用的Cauchy中值定理验证函数,该函数并具有相应的画图功能.请举例验证该函数. 三、 实验原理与数学模型 四、 实验内容(要点) 1、确定函数以及定义范围等初始条件 2、利用柯西中值定理的公式求出z的值 3、根据柯西中值定理的几何意义画出 4、将函数进行通用性封装 五、 实验过程记录(含基本步骤、主要程序清单及异常情况记录等) 步骤一:确定函数以及定义范围 x=g[t_]:=t^2; y=f[t_]:=t; a=0; b=p/2; 步骤二:利用柯西中值定理的公式求出z的值 s=Solve[f’[t]/g'[t](f[a]—f[b])/(g[a]-g[b]),t]; z=t/。s[[1]] 步骤三:根据柯西中值定理的几何意义画出 ①由参数方程构成的函数的图像 L1=ParametricPlot[{𝑔[𝑡],𝑓[𝑡]},{𝑡,𝑎,𝑏},PlotStyle→{RGBColor[1,0,0]}]; ②函数两端点的连线的图像 𝐹[x_]:=(𝑥−𝑔[𝑎])∗((𝑓[𝑏]−𝑓[𝑎])(𝑔[𝑏]−𝑔[𝑎]))+𝑓[𝑎]; L2 = Plot[{F[x]}, {x, g[a], g[b]}, PlotStyle -〉 {RGBColor[0, 1, 0]}] ③函数在z点切线的图像 k = f'[\[Zeta]]/g’[\[Zeta]]; G[x_] := k*(x - g[\[Zeta]]) + f[\[Zeta]]; L3 = Plot[{G[x]}, {x, g[a], g[b]}, PlotStyle -〉 {RGBColor[0, 0, 1]}]; 步骤四:图像后期处理 ①添加辅助直线x=z L4=ParametricPlot[{𝑔[𝜁],𝑦},{𝑦,0,𝑓[𝜁]},PlotStyle→{RGBColor[0,0,0]}]; ②给坐标轴添加箭头 Show[L1,L2,L3,L4,DisplayFunction→$DisplayFunction,Axes→True,AxesStyle→Arrowheads[0。05]] 步骤五:封装函数(以下为程序的完整代码) Cauchy[f_, g_, a_, b_] := Module[{v1, v2, s, F, G, H, I, k, L1, L2, L3, L4, \[Zeta] = {}}, v1 = Variables[f][[1]]; v2 = Variables[g][[1]]; F[t_] = f /. v1 —〉 t; G[t_] = g /。 v2 —> t; H[x_] := (x - G[a])*((F[b] - F[a])/(G[b] - G[a])) + F[a]; L1 = ParametricPlot[{G[x], F[x]}, {x, a, b}, PlotStyle -〉 {RGBColor[1, 0, 0]}]; L2 = Plot[{H[x]}, {x, G[a], G[b]}, PlotStyle -〉 {RGBColor[0, 1, 0]}]; s = Solve[F'[t]/G'[t] == (F[a] - F[b])/(G[a] — G[b]), t]; \[Zeta] = t /. s[[1]]; k = F'[\[Zeta]]/G'[\[Zeta]]; I[x_] := k*(x — G[\[Zeta]]) + F[\[Zeta]]; L3 = Plot[{I[x]}, {x, G[a], G[b]}, PlotStyle —〉 {RGBColor[0, 0, 1]}]; L4 = ParametricPlot[{G[\[Zeta]], y}, {y, 0, F[\[Zeta]]}, PlotStyle —> {RGBColor[0, 0, 0]}]; {”\[Zeta]="[\[Zeta]], Show[L1, L2, L3, L4, Axes —> True, AxesStyle -〉 Arrowheads[0.05]]} ]; 六、 实验结果报告与实验总结 1、输入初始条件 Cauchy[x, x^2, 0, π/2] 2、运行结果 3、实验分析总结 总结:通过本实验掌握并应用Mathematica解方程,求导,函数画图,函数封装等功能。 七、 参考文献 《工科数学分析基础》《Mathematica数学实验(徐安农)》 《数学实验教材初稿(石大)》- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 实验 Cauchy 中值 定理
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文