2022-2023学年山西省大同市云冈区高一上数学期末教学质量检测模拟试题含解析.doc
《2022-2023学年山西省大同市云冈区高一上数学期末教学质量检测模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山西省大同市云冈区高一上数学期末教学质量检测模拟试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.已知直三棱柱中,,,,则异面直线与所成角的余弦值为 A. B. C. D. 2.已知,,,则的大小关系为 A B. C. D. 3.已知直线,,若,则实数的值为 A.8 B.2 C. D.-2 4.已知直线经过点,,则该直线的斜率是 A. B. C. D. 5.下列四组函数中,表示相同函数的一组是() A., B., C., D., 6.点从点出发,按逆时针方向沿周长为的平面图形运动一周,,两点连线的距离与点走过的路程的函数关系如图所示,则点所走的图形可能是 A. B. C. D. 7.当时,若,则的值为 A. B. C. D. 8.已知() A. B. C. D. 9.已知,,函数的零点为c,则( ) A.c<a<b B.a<c<b C.b<a<c D.a<b<c 10.已知,且,则下列不等式恒成立的是( ) A. B. C. D. 11.函数的零点所在的区间是 A. B. C. D. 12.函数的大致图象是() A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.化简:________. 14.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______ 15.给出下列命题: ①存在实数,使; ②函数是偶函数; ③若是第一象限的角,且,则; ④直线是函数的一条对称轴; ⑤函数的图像关于点成对称中心图形. 其中正确命题序号是__________. 16.已知扇形OAB的面积为,半径为3,则圆心角为_____ 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.化简下列各式: ; 18.已知tanα<0, (1)若求的值; (2)若求tanα的值. 19.已知集合. (1)若,求a的值; (2)若且“”是“”的必要不充分条件,求实数a的取值范围. 20.如图,在四棱锥中,底面为平行四边形,,. (1)求证:; (2)若为等边三角形,,平面平面,求四棱锥的体积. 21.已知奇函数(a为常数) (1)求a的值; (2)若函数有2个零点,求实数k的取值范围; 22.已知集合,,. (1)求,; (2)若,求实数的取值范围. 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、C 【解析】如图所示,补成直四棱柱, 则所求角为, 易得,因此,故选C 平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下: ①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围 2、A 【解析】利用对数的性质,比较a,b的大小,将b,c与1进行比较,即可得出答案 【详解】令,结合对数函数性质,单调递减,,,. 【点睛】本道题考查了对数、指数比较大小问题,结合相应性质,即可得出答案 3、A 【解析】利用两条直线平行的充要条件求解 【详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2, ∴, 解得a=8 故选A . 【点睛】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用 4、D 【解析】根据斜率公式,,选D. 5、C 【解析】根据相同函数的判断原则进行定义域的判断即可选出答案. 【详解】解:由题意得: 对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误; 对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误; 对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确; 对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误. 故选:C 6、C 【解析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P运动到图形周长一半时O,P两点连线的距离最大,可以排除选项A,D,对选项B正方形的图像关于对角线对称,所以距离与点走过的路程的函数图像应该关于对称,由图可知不满足题意故排除选项B, 故选C 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力 7、A 【解析】分析:首先根据题中所给的角的范围,求得相应的角的范围,结合题中所给的角的三角函数值,结合角的范围,利用同角三角函数的平方关系式,求得相应的三角函数值,之后应用诱导公式和同角三角函数商关系,求得结果. 详解:因为,所以, 所以,因为, 所以, 所以,所以 ,所以答案是,故选A. 点睛:该题考查的是有关三角恒等变换问题,涉及到的知识点有同角三角函数关系式中的平方关系和商关系,以及诱导公式求得结果. 8、D 【解析】利用诱导公式对式子进行化简,转化为特殊角的三角函数,即可得到答案; 【详解】, 故选:D 9、B 【解析】由函数零点存在定理可得,又,,从而即可得答案. 【详解】解:因为在上单调递减,且,, 所以的零点所在区间为,即.又因为,,所以a<c<b 故选:B. 10、D 【解析】对A,C利用特殊值即可判断;对B,由对数函数的定义域即可判断,对D,由指数函数的单调性即可判断. 【详解】解:对A,令,, 则满足,但,故A错误; 对B,若使, 则需满足,但题中,故B错误; 对C,同样令,, 则满足,但,故C错误; 对D,在上单调递增, 当时,,故D正确. 故选:D. 11、B 【解析】∵,,,, ∴函数的零点所在区间是 故选B 点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得 这个也就是方程的根.由此可判断根所在区间. 12、C 【解析】由奇偶性定义判断的奇偶性,结合对数、余弦函数的性质判断趋向于0时的变化趋势,应用排除法即可得正确答案. 【详解】由且定义域, 所以为偶函数,排除B、D. 又在趋向于0时趋向负无穷,在趋向于0时趋向1, 所以在趋向于0时函数值趋向负无穷,排除A. 故选:C 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、-1 【解析】原式)( .故答案为 【点睛】本题的关键点有: 先切化弦,再通分; 利用辅助角公式化简; 同角互化. 14、 【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为. 考点:圆锥的侧面展开图与体积. 15、④⑤ 【解析】根据两角和与差的正弦公式可得到sinα+cosαsin(α)结合正弦函数的值域可判断①;根据诱导公式得到=sinx,再由正弦函数的奇偶性可判断②;举例说明该命题正误可判断③;x代入到y=sin(2xπ),根据正弦函数的对称性可判断④;x代入到,根据正切函数的对称性可判断⑤. 【详解】对于①,sinα+cosαsin(α),故①错误; 对于②,=sinx,其为奇函数,故②错误; 对于③,当α、β时,α、β是第一象限的角,且α>β,但sinα=sinβ,故③错误; 对于④,x代入到y=sin(2xπ)得到sin(2π)=sin1,故命题④正确; 对于⑤,x代入到得到tan()=0,故命题⑤正确. 故答案为④⑤ 【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了三角函数的化简与求值问题,是综合性题目 16、 【解析】直接利用扇形的面积公式得到答案. 【详解】 故答案为: 【点睛】本题考查了扇形面积的计算,属于简单题. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1)1;(2). 【解析】直接利用对数的运算性质求解即可;直接利用三角函数的诱导公式求解即可 【详解】; . 【点睛】本题考查了三角函数的化简求值,考查了三角函数的诱导公式及对数的运算性质,是基础题. 18、(1);(2)或 【解析】(1)利用同角三角函数的基本关系求得的值,可得的值,再利用诱导公式求得要求式子的值 (2)利用同角三角函数的基本关系求得,由此求得的值 【详解】(1),,为第四象限角,,, (2),,,或 【点睛】本题主要考查同角三角函数的基本关系,诱导公式,属于基础题 19、(1) (2) 【解析】(1)先求出集合B,再由题意可得从而可求出a的值, (2)由题意可得Ü,从而有再结合可求出实数a的取值范围. 【小问1详解】 由题设知, ∵,∴ 可得. 【小问2详解】 ∵,∴,解得. ∵“”是“”的必要不充分条件,∴Ü. ∴ 解得. 因此,实数a的取值范围为. 20、(1)详见解析;(2)2 【解析】(1)根据题意作于,连结,可证得,于是,故,然后根据线面垂直的判定得到平面,于是可得所证结论成立.(2)由(1)及平面平面可得平面,故为四棱锥的高.又由题意可证得四边形为有一个角为的边长为的菱形,求得四边形的面积后可得所求体积 【详解】(1)作于,连结. ∵,,是公共边, ∴, ∴ ∵, ∴, 又平面,平面,, ∴平面, 又平面, ∴ (另法:证明,取的中点.) (2)∵平面平面,平面平面,, ∴平面 又为等边三角形,, ∴. 又由题意得,,是公共边, ∴, ∴, ∴平行四边形为有一个角为的边长为的菱形, ∴, ∴四棱锥的体积 【点睛】(1)证明空间中的垂直关系时,要注意三种垂直关系间的转化,合理运用三种垂直关系进行求解,以达到求解的目的,同时在证题中要注意平面几何知识的运用 (2)立体几何中的计算问题中往往涉及到证明,同时在证明中渗透着计算,计算时要注意中间量的求解,最后再结合面积、体积公式得到所求 21、(1) (2) 【解析】(1)由奇函数中求解即可; (2)函数有2个零点,可转为为也即函数与的图象有两个交点,结合图象即可求解 【小问1详解】 由是上的奇函数,可得, 所以,解得,经检验满足奇函数, 所以; 【小问2详解】 函数有2个零点, 可得方程函数有2个根,即有2个零点, 也即函数与的图象有两个交点,由图象可知 所以实数得取值范围是 22、(1),;(2). 【解析】(1)利用集合的并、交运算求,即可. (2)讨论、,根据列不等式求的范围. 【详解】(1)∵, ∴,. (2)当时, ,解得,则满足. 当时,,解得,又 ∴,解得,即. 综上,.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 山西省 大同市 云冈区高一上 数学 期末 教学质量 检测 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文