等比数列知识点总结和典型例题.doc
《等比数列知识点总结和典型例题.doc》由会员分享,可在线阅读,更多相关《等比数列知识点总结和典型例题.doc(12页珍藏版)》请在咨信网上搜索。
1、等比数列知识点总结与典型例题1、等比数列的定义:,称为公比2、通项公式:,首项:;公比:推广:3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或注意:同号的两个数才有等比中项,并且它们的等比中项有两个(2)数列是等比数列4、等比数列的前项和公式:(1)当时,(2)当时,(为常数)5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列(2)等比中项:为等比数列(3)通项公式:为等比数列6、等比数列的证明方法:依据定义:若或为等比数列7、等比数列的性质:(2)对任何,在等比数列中,有。(3)若,则。特别的,当时,得 注:
2、等差和等比数列比较:等差数列等比数列定义递推公式;通项公式()中项()()前项和重要性质经典例题透析类型一:等比数列的通项公式例1等比数列中,, ,求.思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出和,可得;或注意到下标,可以利用性质可求出、,再求.解析:法一:设此数列公比为,则由(2)得:.(3) .由(1)得: , .(4)(3)(4)得:, ,解得或当时,;当时,.法二:,又, 、为方程的两实数根, 或 , 或.总结升华: 列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变
3、形要用除法(除式不为零).举一反三:【变式1】an为等比数列,a1=3,a9=768,求a6。【答案】96法一:设公比为q,则768=a1q8,q8=256,q=2,a6=96;法二:a52=a1a9a5=48q=2,a6=96。【变式2】an为等比数列,an0,且a1a89=16,求a44a45a46的值。【答案】64;,又an0,a45=4。【变式3】已知等比数列,若,求。【答案】或;法一:,从而解之得,或,当时,;当时,。故或。法二:由等比数列的定义知,代入已知得将代入(1)得,解得或由(2)得或 ,以下同方法一。类型二:等比数列的前n项和公式例2设等比数列an的前n项和为S
4、n,若S3+S6=2S9,求数列的公比q.解析:若q=1,则有S3=3a1,S6=6a1,S9=9a1.因a10,得S3+S62S9,显然q=1与题设矛盾,故q1.由得,整理得q3(2q6-q3-1)=0,由q0,得2q6-q3-1=0,从而(2q3+1)(q3-1)=0,因q31,故,所以。举一反三:【变式1】求等比数列的前6项和。【答案】;,。【变式2】已知:an为等比数列,a1a2a3=27,S3=13,求S5.【答案】;,则a1=1或a1=9.【变式3】在等比数列中,求和。【答案】或2,;,解方程组,得 或将代入,得,由,解得;将代入,得,由,解得。或2,。类型三:等比数列
5、的性质例3. 等比数列中,若,求.解析: 是等比数列, 举一反三:【变式1】正项等比数列中,若a1a100=100; 则lga1+lga2+lga100=_.【答案】100;lga1+lga2+lga3+lga100=lg(a1a2a3a100)而a1a100=a2a99=a3a98=a50a51 原式=lg(a1a100)50=50lg(a1a100)=50lg100=100。【变式2】在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_。【答案】216;法一:设这个等比数列为,其公比为,。法二:设这个等比数列为,公比为,则,加入的三项分别为,由题意,也成等比数列,故,。类型四
6、:等比数列前n项和公式的性质例4在等比数列中,已知,求。思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k项和,第2个k项和,第3个k项和,第n个k项和仍然成等比数列。解析:法一:令b1=Sn=48, b2=S2n-Sn=60-48=12,b3=S3n-S2n观察b1=a1+a2+an,b2=an+1+an+2+a2n=qn(a1+a2+an),b3=a2n+1+a2n+2+a3n=q2n(a1+a2+an)易知b1,b2,b3成等比数列,S3n=b3+S2n=3+60=63.法二:,由已知得得,即 代入得,。法三:为等比数列,也成等
7、比数列,。举一反三:【变式1】等比数列中,公比q=2, S4=1,则S8=_.【答案】17;S8=S4+a5+a6+a7+a8=S4+a1q4+a2q4+a3q4+a4q4=S4+q4(a1+a2+a3+a4)=S4+q4S4=S4(1+q4)=1(1+24)=17【变式2】已知等比数列的前n项和为Sn, 且S10=10, S20=40,求:S30=?【答案】130;法一:S10,S20-S10,S30-S20构成等比数列,(S20-S10)2=S10(S30-S20) 即302=10(S30-40),S30=130.法二:2S10S20,, , .【变式3】等比数列的项都是正数,若Sn=80
8、, S2n=6560,前n项中最大的一项为54,求n.【答案】 ,(否则)=80 .(1)=6560.(2),(2)(1)得:1+qn=82,qn=81.(3)该数列各项为正数,由(3)知q>1an为递增数列,an为最大项54.an=a1qn-1=54,a1qn=54q,81a1=54q.(4)代入(1)得,q=3,n=4.【变式4】等比数列中,若a1+a2=324, a3+a4=36, 则a5+a6=_.【答案】4;令b1=a1+a2=a1(1+q),b2=a3+a4=a1q2(1+q),b3=a5+a6=a1q4(1+q), 易知:b1, b2, b3成等比数列,b3=4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列 知识点 总结 典型 例题 精华 word
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。